Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Acoustical Society of America (ASA)  (9)
Type of Medium
Publisher
  • Acoustical Society of America (ASA)  (9)
Language
Years
FID
  • 1
    Online Resource
    Online Resource
    Acoustical Society of America (ASA) ; 2013
    In:  The Journal of the Acoustical Society of America Vol. 133, No. 4 ( 2013-04-01), p. 2136-2145
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 133, No. 4 ( 2013-04-01), p. 2136-2145
    Abstract: The acoustic properties of porous materials containing dead-end (DE) pores have been proposed by Dupont et al. [J. Appl. Phys. 110, 094903 (2011)]. In the theoretical description, two physical parameters were defined (the dead-end porosity and the average length of the dead-end pores). With the knowledge of the open porosity (measured with non-acoustic methods), and the measurement of kinematic porosity (also called the Biot porosity in this article), it is possible to deduce the dead-end porosity. Two acoustic methods for measuring the Biot porosity for a wide range of porosities are proposed. These methods are based on acoustic transmission and on the low and high frequency behaviors of acoustic indicators. The low frequency method is valid for high porosities. It involves measurements in a transmission tube and the knowledge of the theoretical asymptotic behavior of the phase velocity at high frequencies. The high frequency method is based on ultrasonic measurements and on the high frequency asymptotic behavior of the transmission coefficient. It is well adapted for material with relatively low values of porosity. Good precision was found for both methods and materials containing dead end porosity were tested.
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 2013
    detail.hit.zdb_id: 1461063-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Acoustical Society of America (ASA) ; 2012
    In:  The Journal of the Acoustical Society of America Vol. 132, No. 5 ( 2012-11-01), p. 3138-3147
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 132, No. 5 ( 2012-11-01), p. 3138-3147
    Abstract: A hybrid model describing the acoustic properties of plates with macroperforations that can be unevenly distributed on the plate surface and backed by woven or precision woven meshes with microscopic perforations is proposed. The plate perforations may be of circular or rectangular shapes. Since the perforated plate may not necessarily be considered as an equivalent fluid, its impedance is calculated by the Maa model [Noise Control Eng. J. 29, 77–84 (1987)], whereas the Johnson-Champoux-Allard model [J. Appl. Phys. 70, 1975–1979 (1991)] is used for the mesh, considered as an equivalent fluid. A simple model for the elementary cell of the mesh structure is proposed in order to calculate parameters that can be considered as the thermal characteristic length Λ′ and the viscous characteristic length Λ. An effective airflow resistivity is introduced to account for the increase of particle velocity through the mesh placed behind the carrying macroperforated plate and is used in the transfer matrix approach to obtain the impedance of the whole multilayer system. The hybrid model seems to represent a good approach of this multilayer system. The theoretical predictions are compared with experimental measurements.
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 2012
    detail.hit.zdb_id: 1461063-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Acoustical Society of America (ASA) ; 2010
    In:  The Journal of the Acoustical Society of America Vol. 127, No. 5 ( 2010-05-01), p. 2875-2882
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 127, No. 5 ( 2010-05-01), p. 2875-2882
    Abstract: The acoustic behavior of micro-perforated panels (MPP) is studied theoretically and experimentally at high level of pressure excitation. A model based on Forchheimer’s regime of flow velocity in the perforations is proposed. This model is valid at relatively high Reynolds numbers and low Mach numbers. The experimental method consists in measuring the acoustical pressure at three different positions in an impedance tube, the two measurement positions usually considered in an impedance tube and one measurement in the vicinity of the rear surface of the MPP. The impedance tube is equipped with a pressure driver instead of the usual loudspeaker and capable of delivering a high sound pressure level up to 160 dB. MPP specimens made out of steel, dural and polypropylene were tested. Measurements using random noise or sinusoidal excitation in a frequency range between 200 and 1600 Hz were carried out on MPPs backed by air cavities. It was observed that the maximum of absorption can be a positive or a negative function of the flow velocity in the perforations. This suggests the existence of a maximum of absorption as a function of flow velocity. This behavior was predicted by the model and confirmed experimentally.
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 2010
    detail.hit.zdb_id: 1461063-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Acoustical Society of America (ASA) ; 2017
    In:  The Journal of the Acoustical Society of America Vol. 141, No. 5_Supplement ( 2017-05-01), p. 3641-3641
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 141, No. 5_Supplement ( 2017-05-01), p. 3641-3641
    Abstract: This presentation examines a perforated resonant material, in which the principal perforations comprise a network of periodically spaced dead-end pores. This material can show good sound absorption at low frequencies, particularly given its relatively small thickness. In a recent study, this kind of material was modeled by an effective fluid approach which allowed low frequency approximations. At low frequency, it was shown that the periodic array of dead-end pores increases the effective compressibility without modifying the effective dynamic density. Thereby, the resonance frequency of the material is reduced in a significant way, as is the frequency of the first sound absorption peak. Moreover, a bandgap effect occurs at high frequency for the sound transmission problem. This study suggested a new concept of micro-structure for designing low-frequency resonant acoustic absorbers. A transfer matrix approach is now proposed to model and optimize such a concept. Prototypes have been made with 3D printing and tested in an acoustic tube for sound absorption and sound transmission loss. The resonant periodicity effects have been observed, and the measurements compare well with the predictions of the transfer matrix model. Finally, an optimization of the microstructure is proposed.
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 2017
    detail.hit.zdb_id: 1461063-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Acoustical Society of America (ASA) ; 2013
    In:  The Journal of the Acoustical Society of America Vol. 133, No. 5_Supplement ( 2013-05-01), p. 3242-3242
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 133, No. 5_Supplement ( 2013-05-01), p. 3242-3242
    Abstract: This study presents a method to measure the acoustic properties of a homogeneous porous material with a support or a reduction element in an acoustic tube. Some materials tested have a lateral size much smaller than the tube’s diameter, as they cannot be produced in the correct dimensions without corrupting the material; this also permits the testing of the same samples in a large frequency bandwidth by using different section tubes. Moreover, the acoustic leaks on the material boundaries can significantly change the transmission loss measured in tubes. To rectify these problems, rings can be placed on each material surface. The presence of these rings can influence the acoustic indicator measurement; while this effect is negligible for tubes with a large cross section, it is not for tubes with a small cross section. To correct, or remove, the influence of the rings, we propose to use an application of the parallel assembly process of the transfer matrix method, which has recently been proposed by Panneton et al. [Proceeding Internoise, New York (2012)]. Measurements on classical porous materials with and without reductions are proposed and compared to simulated results. The ring’s effects and the proposed corrections are discussed for different materials.
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 2013
    detail.hit.zdb_id: 1461063-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Acoustical Society of America (ASA) ; 2014
    In:  The Journal of the Acoustical Society of America Vol. 136, No. 2 ( 2014-08-01), p. EL90-EL95
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 136, No. 2 ( 2014-08-01), p. EL90-EL95
    Abstract: A transfer matrix method to predict absorption coefficient and transmission loss of parallel assemblies of materials which can be expressed by a 2 × 2 transfer matrix was published recently. However, the usual method based on the sum of admittances is largely used to predict also surface admittance of parallel assemblies. This paper aims to highlight differences between both methods through three examples on a parallel assembly backed by (1) a rigid wall, (2) an air cavity, and (3) an anechoic termination.
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 2014
    detail.hit.zdb_id: 1461063-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Acoustical Society of America (ASA) ; 2013
    In:  The Journal of the Acoustical Society of America Vol. 134, No. 6 ( 2013-12-01), p. 4648-4658
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 134, No. 6 ( 2013-12-01), p. 4648-4658
    Abstract: The transfer matrix method (TMM) is used conventionally to predict the acoustic properties of laterally infinite homogeneous layers assembled in series to form a multilayer. In this work, a parallel assembly process of transfer matrices is used to model heterogeneous materials such as patchworks, acoustic mosaics, or a collection of acoustic elements in parallel. In this method, it is assumed that each parallel element can be modeled by a 2 × 2 transfer matrix, and no diffusion exists between elements. The resulting transfer matrix of the parallel assembly is also a 2 × 2 matrix that can be assembled in series with the classical TMM. The method is validated by comparison with finite element (FE) simulations and acoustical tube measurements on different parallel/series configurations at normal and oblique incidence. The comparisons are in terms of sound absorption coefficient and transmission loss on experimental and simulated data and published data, notably published data on a parallel array of resonators. From these comparisons, the limitations of the method are discussed. Finally, applications to three-dimensional geometries are studied, where the geometries are discretized as in a FE concept. Compared to FE simulations, the extended TMM yields similar results with a trivial computation time.
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 2013
    detail.hit.zdb_id: 1461063-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Acoustical Society of America (ASA) ; 2008
    In:  The Journal of the Acoustical Society of America Vol. 123, No. 5_Supplement ( 2008-05-01), p. 3615-3615
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 123, No. 5_Supplement ( 2008-05-01), p. 3615-3615
    Abstract: When submitted to relatively high sound pressure amplitudes, Micro Perforated Panels (MPP) are influenced by certain effects, which are non negligible (vibration of the panel, end radiation and also proximity of the perforations). A model of the total impedance of the MPP is derived from the sum of the contributions of each effect in the case of relatively high sound pressure. The effect of end radiation is supposed to be independent of the propagation inside the apertures. The model is applicable for low Mach numbers. In order to validate the models, various steel MPP specimens were built with different aperture diameters, interstices (distance between two near apertures) and thickness sizes. The experimental method consists in measuring the acoustical pressure before the specimen and the velocity at the aperture entrance. The experimental setup is based on the use of an impedance circular tube. A loudspeaker capable of delivering high sound pressure is used as a source. The excitation is a white noise in a frequency range between 500 Hz and 5000 Hz and the detection is performed with microphones. The comparison between measurements and simulations for the impedance and absorption coefficient is done and discussed.
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 2008
    detail.hit.zdb_id: 1461063-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Acoustical Society of America (ASA) ; 2013
    In:  The Journal of the Acoustical Society of America Vol. 133, No. 5_Supplement ( 2013-05-01), p. 3288-3288
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 133, No. 5_Supplement ( 2013-05-01), p. 3288-3288
    Abstract: The Transfer Matrix Method (TMM) is used conventionally to predict the acoustic properties of laterally infinite homogeneous layers assembled in series to form a multilayer. In this work, a parallel assembly process of transfer matrices is used to model heterogeneous materials such as patchworks, acoustic mosaics, or a collection of acoustic elements in parallel. In this method, it is assumed that each parallel element can be modeled by a 2x2 transfer matrix, and no diffusion exists between elements. The method is validated by comparison with finite element (FE) simulations and acoustical tube measurements on different configurations at normal and oblique incidence. Then, an overview of the possibilities, such as the combination of series and parallel matrices, the sound absorption coefficient, and the transmission loss of a parallel array of resonators or three-dimensional geometries is presented and discussed.
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 2013
    detail.hit.zdb_id: 1461063-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages