Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences  (37)
Type of Medium
Publisher
  • Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences  (37)
Language
  • 1
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2021
    In:  Acta Physica Sinica Vol. 70, No. 22 ( 2021), p. 222801-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 70, No. 22 ( 2021), p. 222801-
    Abstract: The data of neutron capture cross section are very important for the research of nuclear astrophysics, advanced nuclear energy development. Owing to the limitation of neutron source and detector, the experimental data of neutron capture cross section in an energy range of 1 eV–10 keV were almost blank in China. The first Chinese gamma-ray total absorption facility has been constructed in the key laboratory of nuclear data at China institute of atomic energy, which consists of 40 BaF〈sub〉2〈/sub〉 detector units. The BaF〈sub〉2〈/sub〉 crystal shell with a thickness of 15 cm and an inner radius of 10 cm covers 95.2% of the solid angle. On-line measurement method of neutron capture reaction cross section is established on the back-streaming white neutron source of China spallation neutron source by using the upgraded facility. The cross section of 〈sup〉197〈/sup〉Au neutron capture reaction is measured for the first time under the experimental condition of irregular 30 mm neutron beam spot. The measured position of resonance peak is well consistent with the relevant data of ENDF evaluation database, which verifies the reliability of the measurement device and measurement technology, and thus laying the foundation for the acquisition of high precision cross section in future.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2021
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2024
    In:  Acta Physica Sinica Vol. 73, No. 7 ( 2024), p. 072801-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 73, No. 7 ( 2024), p. 072801-
    Abstract: Neutron capture reaction is one of the neutron reactions and plays an important role in using reactor control rods and shell materials, designing nuclear device structures, and studying nuclear astrophysics S processes and element origins. The 4π BaF 〈 sub 〉 2 〈 /sub 〉 detection device has advantages such as high time resolution, low neutron sensitivity, and high detection efficiency, thus making it suitable for measuring neutron radiation capture reaction cross-section data. In order to fill the gap in our neutron capture reaction data in the keV energy range and improve their accuracy, the Key Laboratory of Nuclear Data at the Chinese Institute of Atomic Energy (CIAE) has established a Gamma Total Absorption Facility (GTAF), which consists of 28 hexagonal BaF 〈 sub 〉 2 〈 /sub 〉 crystals and 12 pentagonal BaF 〈 sub 〉 2 〈 /sub 〉 crystals to form a spherical shell with an external diameter of 25 cm and an internal diameter of 10 cm, covering 95.2% of the solid angles. The Back-n beam line of the Chinese Spallation Neutron Source (CSNS) is a back-streaming white beam line that covers neutron energy ranging from a few eV to several hundred MeV, making it suitable for measuring neutron capture cross-sections. The reaction cross-section data of 〈 sup 〉 197 〈 /sup 〉 Au is measured by using GTAF on the Back-n beam line. The measurement data are preliminarily background deducted through energy screening, PSD method, and crystal multiplicity screening. Subsequently, the background is analyzed and deducted based on the measurement data of 〈 sup 〉 nat 〈 /sup 〉 C and empty samples, and the yield of 〈 sup 〉 197 〈 /sup 〉 Au capture reaction is obtained. Resonance parameters are a set of parameters extracted from experimental data to describe the resonance curve, which can eliminate the influence of experimental conditions on resonance data and are more important than the cross-section obtained from experiments. The resonance energy, neutron resonance width, and gamma resonance width parameters of 〈 sup 〉 197 〈 /sup 〉 Au at 1–100 eV are fitted by using the SAMMY program. From the comparison between the resonance curves obtained from experimental measurements and the resonance parameters obtained from fitting with the ENDF/B-VIII.0 database, it can follow that the experimental measurement results are in good agreement with the database, nevertheless, there exist some differences in the resonance parameter, which may be due to the GTAF energy resolution, Back-n neutron spectrum measurement accuracy, and the experimental background deduction method. Our next work is to identify the sources of difference.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2024
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2021
    In:  Acta Physica Sinica Vol. 70, No. 8 ( 2021), p. 082901-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 70, No. 8 ( 2021), p. 082901-
    Abstract: At present, there exist few proton-beam terminals for the detector calibration in the world. Meanwhile, most of these terminals provide monoenergetic protons. Back-n white neutron source from China Spallation Neutron Source(CSNS) was put into operation in 2018. Based on the white neutron flux ranging from 0.5 eV to 200 MeV from the CSNS Back-n white neutron source, continuous-energy protons involved in a wide energy spectrum can be acquired from the 〈sup〉1〈/sup〉H(n, el) reaction. Adopting this method, a new research platform for researches such as proton calibration is realized at CSNS. As hydrogen exists as gas at normal temperature and pressure, in the selecting of the proton-converting target, the hydrogen-rich compounds are preferential considered. Considering the reaction cross sections of the 〈sup〉1〈/sup〉H(n, el), 〈sup〉12〈/sup〉C(n, p)〈sup〉12〈/sup〉B, 〈sup〉12〈/sup〉C(n, d)〈sup〉11〈/sup〉B, 〈sup〉12〈/sup〉C(n, t)〈sup〉10〈/sup〉B, 〈sup〉12〈/sup〉C(n, 〈sup〉3〈/sup〉He)〈sup〉10〈/sup〉Be, 〈sup〉12〈/sup〉C(n, α)〈sup〉9〈/sup〉Be and 〈sup〉1〈/sup〉H(n, γ)〈sup〉2〈/sup〉H, polyethylene and polypropylene are suitable for serving as targets in this research. Based on a 3U PXIe, digitizers with 1 GSps sampling rate and 12 bit resolution are utilized to digitize and record the output signals of telescopes. The time and amplitude information of each signal are extracted from its recorded waveform. Proton fluxes can be calculated by using the neutron energy spectrum and the cross section of the 〈sup〉1〈/sup〉H(n, el) reaction. Using the γ-flash event as the starting time of the time-of-flight (TOF) and the time information of signal in detector as the stopping time, the kinematic energy of each secondary proton can be deduced from the TOF and the angle of the detector. A calibration experiment on three charged particle telescopes, with each telescope consisting of a silicon detector and a CsI(Tl) detector, is carried out on this research platform. The readout methods of the CsI(Tl) detectors in these three telescopes are different. In the calibration experiment, Δ〈i〉E-〈/i〉〈i〉E〈/i〉 two-dimensional spectra and amplitude-〈i〉E〈/i〉〈sub〉p〈/sub〉 two-dimensional spectra of these telescopes are obtained. Through comparing these particle identification spectra, the SiPM is chosen as the signal readout method for CsI(Tl) detectors in the charged particle telescopes. These researches provide experimental evidence for the construction of the charged particle telescope at Back-n, and also illustrate the feasibility of wide-energy spectrum proton calibration based on the Back-n white neutron source.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2021
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2020
    In:  Acta Physica Sinica Vol. 69, No. 17 ( 2020), p. 172901-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 69, No. 17 ( 2020), p. 172901-
    Abstract: The back-streaming neutron beam line (Back-n) was built in the beginning of 2018, which is part of the China Spallation Neutron Source (CSNS). The Back-n is the first white neutron beam line in China, and its main application is for nuclear data measurement. For most of neutron-induced nuclear reaction measurements based on white neutron facilities, the beam of gamma rays accompanied with neutron beam is one of the most important experimental backgrounds. The back streaming neutron beam is transported directly from the spallation target to the experimental station without any moderator or shielding, the flux of the in-beam gamma rays in the experimental station is much larger than those of these facilities with neutron moderator and shielding. Therefore, it is necessary to consider the influence of in-beam gamma rays on the experimental results. Studies of the in-beam gamma rays are carried out at the back-n. Monte-Carlo simulation is employed to obtain the energy distribution and the time structure of the in-beam gamma rays. According to the simulation results, when the neutron flight time is longer than 1.0 μs the energy distribution of the in-beam gamma rays does not vary with flight time. Therefore, the time structure of these gamma rays can be measured without the correction of the detection efficiency. In this work, the time structure of the in-beam gamma rays in the low neutron energy region is measured by both direct and indirect methods. In the direct measurement, a 〈sup〉6〈/sup〉Li loaded ZnS(Ag) scintillator is located on the neutron beam line and the time of flight method is used to determine the time structure of neutrons and gamma rays. The gamma rays are separated from neutrons with pulse-shape discrimination. The black filter method is used to verify the particle discrimination results. In the indirect measurement, the C〈sub〉6〈/sub〉D〈sub〉6〈/sub〉 scintillation detectors are used to measure the gamma rays scattered off a Pb sample on the way of the neutron beam. The time structure of the in-beam gamma rays is derived from that of the scattered gamma rays. The experimental results are in good agreement with the simulations with the time-of-flight between 12 μs and 2.0 ms. Besides, according to the simulation results, the intensity of the in-beam gamma rays is 1.21 × 10〈sup〉6〈/sup〉 s〈sup〉–1〈/sup〉·cm〈sup〉–2〈/sup〉 in the center of the experimental station 2 of Back-n, which is 76.5 m away from the spallation target of CSNS.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2020
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2019
    In:  Acta Physica Sinica Vol. 68, No. 10 ( 2019), p. 109901-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 68, No. 10 ( 2019), p. 109901-
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2019
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 2019
    In:  Acta Physica Sinica Vol. 68, No. 8 ( 2019), p. 080101-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 68, No. 8 ( 2019), p. 080101-
    Abstract: The Chinese spallation neutron source was completed in May 2018 and then subsequently commissioned. The Back-streaming white neutron beam line can be used in neutron nuclear data measurement, neutron physics research, and nuclear technology. In these experiments, it is necessary to know the neutron energy spectrum, the neutron flux, and the neutron beam profile of the neutron beam. In this paper, we present the preliminary measurements of these parameters. The neutron energy spectrum and neutron flux are measured by the time-of-flight method with a fission chamber equipped with 〈sup〉235〈/sup〉U and 〈sup〉238〈/sup〉U samples and a 〈sup〉6〈/sup〉Li-Si detector. The neutron beam profile is measured by a scintillator-CMOS detection system. The preliminary experimental measurements of the beam line are obtained. Among them, the energy spectrum measurement range of white neutrons is from eV to more than 100 MeV, which also gives an uncertainty analysis; the neutron fluence rate gives the full power value of the two experimental halls; the collimated white neutron beam spot is given under a diameter of 60 mm. The future plan is also given. The results of these experimental parameters can serve as the foundation for the future nuclear data measurement and detector calibration experiments of the beam line.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2019
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 57, No. 6 ( 2008), p. 3547-
    Abstract: The effect of background beam with different Glass constant on the relative spatial refractive perturbation in photovoltaic crystal was discussed, in which was introduced the concrete conditions for the formation of bright or dark photovoltaic spatial solitons in crystals with negative refractivity change. Based on the results, for what is to our knowledge the first time, the bright photovoltaic solitons was experimentally observed in LiNbO3:Fe by use of e-ray signal of 532nm and o-ray background illumination of 488nm.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2008
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 65, No. 1 ( 2016), p. 016802-
    Abstract: Fe-doped high-resistivity GaN films and AlGaN/GaN high electron mobility transistor (HEMT) structures have been grown on sapphire substrates by metal organic chemical vapor deposition. The lattice quality, surfaces, sheet resistances and luminescent characteristics of Fe-doped high-resistivity GaN with different Cp2Fe flow rates are studied. It is found that high resistivity can be obtained by Fe impurity introduced Fe3+/2+ deep acceptor level in GaN, which compensates for the background carrier concentration. Meanwhile, Fe impurity can introduce more edge dislocations acting as acceptors, which also compensate for the background carrier concentration to some extent. In a certain range, the sheet resistance of GaN material increases with increasing Cp2Fe flow rate. When the Cp2Fe flow rate is 100 sccm, the compensation efficiency decreases due to the self-compensation effect, which leads to the fact that the increase of the sheet resistance of GaN material is not obvious. In addition, the compensation for Fe atom at the vacancy of Ga atom can be explained as the result of suppressing yellow luminescence. Although the lattice quality is marginally affected while the Cp2Fe flow rate is 50 sccm, the increase of Cp2Fe flow rate will lead to a deterioration in quality due to the damage to the lattice, which is because more Ga atoms are substituted by Fe atoms. Meanwhile, Fe on the GaN surface reduces the surface mobilities of Ga atoms and promotes a transition from two-dimensional to three-dimensional (3D) GaN growth, which is confirmed by atomic force microscope measurements of RMS roughness with increasing Cp2Fe flow rate. The island generated by the 3D GaN growth will produce additional edge dislocations during the coalescence, resulting in the increase of the full width at half maximum of the X-ray diffraction rocking curve at the GaN (102) plane faster than that at the GaN (002) plane with increasing Cp2Fe flow rate. Therefore, the Cp2Fe flow rate of 75 sccm, which makes the sheet resistance of GaN as high as 1 1010 /\Box, is used to grow AlGaN/GaN HEMT structures with various values of Fe-doped layer thickness, which are processed into devices. All the HEMT devices possess satisfactory turn-off and gate-controlled characteristics. Besides, the increase of Fe-doped layer thickness can improve the breakdown voltage of the HEMT device by 39.3%, without the degradation of the transfer characteristic.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2016
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 0, No. 0 ( 2023), p. 0-
    Abstract: The laser probe method is one of the main techniques for capturing ultrafast dynamic processes and has extensive applications in fields such as plasma physics, photochemistry, and biomedical science. In this paper, a time-wavelength encoding optical probe generation scheme is proposed, which uses cascaded frequency doubling crystals with different phasematching angles and independent delay lines to achieve time-wavelength encoding. This method offers single-shot high spatiotemporal resolution, high frame rate, a wide range of adjustable time windows. The temporal resolution of the optical probe depends on the pulse width of the second harmonic, which can be adjusted by changing the phase-matching angle of the frequency doubling crystal. The time window of the optical probe is only related to the change in the delay line, which can be adjusted by changing the length of the delay line. Therefore, the time resolution and time window of the optical probe are independent of each other. An optical probe generation system was constructed with 247 fs temporal resolution, 4 μm spatial resolution, 4.05 THz maximal frame rate, and an adjustable time window from sub-picosecond to 3 ns. The threedimensional spatiotemporal evolution process of plasma filaments was captured within a single shot using the optical probe. The experimental results showed that the ionization front of the plasma propagated forward at a velocity of (2.963 ± 0.024) × 10〈sup〉8〈/sup〉 〈i〉m〈/i〉/〈i〉s〈/i〉,which was consistent with the theoretical prediction. This demonstrated the feasibility of using the probe for capturing ultrafast events. In the discussion, we analyzed that the key parameters of the optical probe can reach a maximum frame rate of 35.7 THz, a maximum time resolution of 28 fs, and a time window range that can be adjusted from hundreds of femtoseconds to tens of nanoseconds. Finally, the optimal design parameters of the optical probe are given for different application scenarios. The optical probe generation scheme has good scalability and versatility, and can be combined with any wavelength decoding device, diffraction imaging, holographic imaging, tomography scanning, and other technologies. The high spatiotemporal resolution of the optical probe and the independent adjustability of its parameters provide a feasible solution for single-shot high spatiotemporal resolution captures of ultrafast dynamic processes at multiple time scales.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2023
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences ; 1986
    In:  Acta Physica Sinica Vol. 35, No. 2 ( 1986), p. 269-
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 35, No. 2 ( 1986), p. 269-
    Abstract: The high quality modulation doped GaAs/N-AlGaAs heterostructures have been grown by a vertical molecular beam epitaxy system (MBE). Electron mobility of two dimentional electron gas (2DBG) at 4.2 K has reached as high as 4.26×105cm2/V·s (in the dark) and 5.9×105cm2/V·s (under light illumination). The polaron mass of 2DEG was determined by analysis of oscillatory resistance change of magnetophonon resonance in pulsed magnetic field. The mobility enhancement of 2DEG in low field and quantum Hall effect in high field at 4.2 K were also studied.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 1986
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages