Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (6)
Type of Medium
Publisher
  • American Association for Cancer Research (AACR)  (6)
Language
Years
Subjects(RVK)
  • 1
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 20, No. 2 ( 2021-02-01), p. 284-295
    Abstract: Glioblastoma multiforme (GBM; grade IV glioma) is the most malignant type of primary brain tumor and is characterized by rapid proliferation and invasive growth. Intermedin (IMD) is an endogenous peptide belonging to the calcitonin gene-related peptide family and has been reported to play an important role in cell survival and invasiveness in several types of cancers. In this study, we found that the expression level of IMD was positively related to the malignancy grade of gliomas. The highest expression of IMD was found in GBM, indicating that IMD may play an important role in glioma malignancy. IMD increased the invasive ability of glioma cells by promoting filopodia formation, which is dependent on ERK1/2 activation. IMD-induced ERK1/2 phosphorylation also promoted GBM cell proliferation. In addition, IMD enhanced mitochondrial function and hypoxia-induced responses in GBM cells. Treatment with anti-IMD monoclonal antibodies not only inhibited tumor growth in both ectopic and orthotopic models of GBM but also significantly enhanced the antitumor activity of temozolomide. Our study may provide novel insights into the mechanism of GBM cell invasion and proliferation and provide an effective strategy to improve the therapeutic effect of GBM treatments.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. LB168-LB168
    Abstract: Background: Morpho-physiological alternations of platelets provided a rationale to harness RNA sequencing of tumor-educated platelets (TEPs) for preoperative diagnosis of cancer. Timely, accurate, and non-invasive detection of ovarian cancer in women with adnexal masses presents a significant clinical challenge. Patients and Methods: This intercontinental, hospital-based, diagnostic study included 761 treatment-naïve inpatients with histologically confirmed adnexal masses and 167 healthy controls from nine medical centers (China, n=3; Netherlands, n=5; Poland, n=1) between September 2016 and May 2019. The main outcomes were the performance of TEPs and their combination with CA125 in two Chinese (VC1 and VC2) and the European (VC3) validation cohorts collectively and independently. Exploratory outcome was the value of TEPs in public pan-cancer platelet transcriptome datasets. Results: The AUCs for TEPs in the combined validation cohort, VC1, VC2, and VC3 were 0.918 (95% CI 0.889-0.948), 0.923 (0.855-0.990), 0.918 (0.872-0.963), and 0.887 (0.813-0.960), respectively. Combination of TEPs and CA125 demonstrated an AUC of 0.922 (0.889-0.955) in the combined validation cohort; 0.955 (0.912-0.997) in VC1; 0.939 (0.901-0.977) in VC2; 0.917 (0.824-1.000) in VC3. For subgroup analysis, TEPs exhibited an AUC of 0.858, 0.859, and 0.920 to detect early-stage, borderline, non-epithelial diseases and 0.899 to discriminate ovarian cancer from endometriosis. Analysis of public datasets suggested that TEPs had potential to detect multiple malignancies (Table 1). Conclusions: TEPs had robustness, compatibility, and universality for preoperative diagnosis of ovarian cancer since it withstood validations in populations of different ethnicities, heterogeneous histological subtypes, early-stage ovarian cancer as well as other malignancies. However, these observations warrant prospective validations in a larger population before clinical utilities. Table 1. Performance for TEPs in public pan-cancer datasets. Disease n Healthy Control AUC, area under the curve (95% CI) Women NSCLC (non-small-cell lung cancer) 126 77 0.758 (0.691-0.825) Breast cancer 38 77 0.817 (0.726-0.909) Colorectal cancer 18 77 0.973 (0.945-1.000) Pancreatic cancer 16 77 0.993 (0.981-1.000) Glioblastoma 10 77 0.923 (0.831-1.000) Men NSCLC 119 82 0.746 (0.677-0.815) Colorectal cancer 25 82 0.933 (0.884-0.982) Pancreatic cancer 22 82 0.993 (0.984-1.000) Glioblastoma 19 82 0.981 (0.959-1.000) All NSCLC 245 159 0.774 (0.728-0.820) Colorectal cancer 40 159 0.978 (0.961-0.996) Breast cancer 38 159 0.821 (0.736-0.906) Pancreatic cancer 35 159 0.987 (0.974-0.999) Glioblastoma 35 159 0.931 (0.890-0.972) Hepatobiliary carcinomas 14 159 0.991 (0.978-1.000) Citation Format: Yue Gao, Chun-Jie Liu, Hua-Yi Li, Xiao-Ming Xiong, Sjors G.j.g. In ‘t Veld, Gui-Ling Li, Jia-Hao Liu, Guang-Yao Cai, Gui-Yan Xie, Shao-Qing Zeng, Yuan Wu, Jian-Hua Chi, Qiong Zhang, Xiao-Fei Jiao, Lin-Li Shi, Wan-Rong Lu, Wei-Guo Lv, Xing-Sheng Yang, Jurgen M.j. Piek, Cornelis D de Kroon, C.a.r. Lok, Anna Supernat, Sylwia Łapińska-Szumczyk, Anna Łojkowska, Anna J. Żaczek, Jacek Jassem, Bakhos A. Tannous, Nik Sol, Edward Post, Myron G. Best, Bei-Hua Kong, Xing Xie, Ding Ma, Thomas Wurdinger, An-Yuan Guo, Qing-Lei Gao. Platelet RNA signature enables early and accurate detection of ovarian cancer: An intercontinental, biomarker identification study [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr LB168.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 25, No. 14 ( 2019-07-15), p. 4530-4541
    Abstract: Immune checkpoint blockade (ICB) therapy induces durable tumor regressions in a minority of patients with cancer. In this study, we aimed to identify kinase inhibitors that were capable of increasing the antimelanoma immunity. Experimental Design: Flow cytometry–based screening was performed to identify kinase inhibitors that can block the IFNγ-induced PD-L1 expression in melanoma cells. The pharmacologic activities of regorafenib alone or in combination with immunotherapy in vitro and in vivo were determined. The mechanisms of regorafenib were explored and analyzed in melanoma patients treated with or without anti–PD-1 using The Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets. Results: Through screening of a kinase inhibitor library, we found approximately 20 agents that caused more than half reduction of cell surface PD-L1 level, and regorafenib was one of the most potent agents. Furthermore, our results showed that regorafenib, in vitro and in vivo, strongly promoted the antitumor efficacy when combined with IFNγ or ICB. By targeting the RET–Src axis, regorafenib potently inhibited JAK1/2–STAT1 and MAPK signaling and subsequently attenuated the IFNγ-induced PD-L1 and IDO1 expression without affecting MHC-I expression much. Moreover, RET and Src co-high expression was an independent unfavorable prognosis factor in melanoma patients with or without ICB through inhibiting the antitumor immune response. Conclusions: Our data unveiled a new mechanism of alleviating IFNγ-induced PD-L1 and IDO1 expression and provided a rationale to explore a novel combination of ICB with regorafenib clinically, especially in melanoma with RET/Src axis activation.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 27, No. 13 ( 2021-07-01), p. 3772-3783
    Abstract: Intratumoral hepatitis B virus (HBV) integrations and mutations are related to hepatocellular carcinoma (HCC) progression. Circulating cell-free DNA (cfDNA) has shown itself as a powerful noninvasive biomarker for cancer. However, the HBV integration and mutation landscape on cfDNA remains unclear. Experimental Design: A cSMART (Circulating Single-Molecule Amplification and Resequencing Technology)-based method (SIM) was developed to simultaneously investigate HBV integration and mutation landscapes on cfDNA with HBV-specific primers covering the whole HBV genome. Patients with HCC (n = 481) and liver cirrhosis (LC; n = 517) were recruited in the study. Results: A total of 6,861 integration breakpoints including TERT and KMT2B were discovered in HCC cfDNA, more than in LC. The concentration of circulating tumor DNA (ctDNA) was positively correlated with the detection rate of these integration hotspots and total HBV integration events in cfDNA. To track the origin of HBV integrations in cfDNA, whole-genome sequencing (WGS) was performed on their paired tumor tissues. The paired comparison of WGS data from tumor tissues and SIM data from cfDNA confirmed most recurrent integration events in cfDNA originated from tumor tissue. The mutational landscape across the whole HBV genome was first generated for both HBV genotype C and B. A region from nt1100 to nt1500 containing multiple HCC risk mutation sites (OR & gt; 1) was identified as a potential HCC-related mutational hot zone. Conclusions: Our study provides an in-depth delineation of HBV integration/mutation landscapes at cfDNA level and did a comparative analysis with their paired tissues. These findings shed light on the possibilities of noninvasive detection of virus insertion/mutation.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2010
    In:  Cancer Research Vol. 70, No. 13 ( 2010-07-01), p. 5486-5496
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 70, No. 13 ( 2010-07-01), p. 5486-5496
    Abstract: Type II endometrial cancer, which mainly presents as serous and clear cell types, has proved to be the most malignant and recurrent carcinoma among various female genital malignancies. The transcription factor Nrf2 was first described as having chemopreventive activity. Activation of the Nrf2-mediated cellular defense response protects cells against the toxic and carcinogenic effects of environmental insults by upregulating an array of genes that detoxify reactive oxygen species and restore cellular redox homeostasis. However, the cancer-promoting role of Nrf2 has recently been revealed. Nrf2 is constitutively upregulated in several types of human cancer tissues and cancer cell lines. Furthermore, inhibition of Nrf2 expression sensitizes cancer cells to chemotherapeutic drugs. In this study, the constitutive level of Nrf2 was compared in different types of human endometrial tumors. It was found that Nrf2 was highly expressed in endometrial serous carcinoma (ESC), whereas complex hyperplasia and endometrial endometrioid carcinoma (EEC) had no or marginal expression of Nrf2. Likewise, the ESC-derived SPEC-2 cell line had a higher level of Nrf2 expression and was more resistant to the toxic effects of cisplatin and paclitaxel than the Ishikawa cell line, which was generated from EEC. Silencing of Nrf2 rendered SPEC-2 cells more susceptible to chemotherapeutic drugs, whereas it had a limited effect on Ishikawa cells. Inhibition of Nrf2 expression by overexpressing Keap1 sensitized SPEC-2 cells or SPEC-2–derived xenografts to chemotherapeutic treatments using both cell culture and severe combined immunodeficient mouse models. Collectively, we provide a molecular basis for the use of Nrf2 inhibitors to increase the efficacy of chemotherapeutic drugs and to combat chemoresistance, the biggest obstacle in chemotherapy. Cancer Res; 70(13); 5486–96. ©2010 AACR.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2010
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2017
    In:  Molecular Cancer Research Vol. 15, No. 12 ( 2017-12-01), p. 1752-1763
    In: Molecular Cancer Research, American Association for Cancer Research (AACR), Vol. 15, No. 12 ( 2017-12-01), p. 1752-1763
    Abstract: In several squamous cell carcinoma (SCC) cells, it has been previously observed that induction of the S100 calcium-binding protein A7 (S100A7) is repressed by YAP via the Hippo pathway. This report now demonstrates that S100A7 also represses YAP expression and activity by ΔNp63 in cancer cells. Stable overexpression of S100A7 activates the NFκB pathway and inhibits the expression of ΔNp63. Caffeic acid phenethyl ester (CAPE), as a specific inhibitor of NFκB, counteracts the inhibitory effect of S100A7 on the expression of ΔNp63 and its target genes. Depletion of S100A7 significantly promotes ΔNp63 expression. These data indicate that S100A7 acts as a suppressor of ΔNp63. Mechanistic examination finds that ΔNp63 not only directly binds to the region of YAP promoter and induces its expression, but also inhibits the Hippo pathway and enhances YAP activity. Importantly, either the positive correlation between S100A7 and YAP phosphorylation at S127 or the negative correlation between S100A7 and ΔNp63 is also observed in skin SCC tissues. Chemosensitivity analysis reveals that S100A7 enhances cancer cells' resistance by inhibition of YAP expression and activity. These results demonstrate that S100A7 is an upstream modulator of the Hippo pathway and extend our understanding of S100A7 functions in cancer. Implications: S100A7 is a new upstream regulator of the Hippo signaling pathway and reduces chemosensitivity of SCC cells through inhibitions of YAP expression and activity. Mol Cancer Res; 15(12); 1752–63. ©2017 AACR.
    Type of Medium: Online Resource
    ISSN: 1541-7786 , 1557-3125
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2097884-4
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages