Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (6)
  • 1
    In: Cancer Immunology Research, American Association for Cancer Research (AACR), Vol. 10, No. 4 ( 2022-04-01), p. 420-436
    Abstract: Protein arginine methyltransferases (PRMT) are a widely expressed class of enzymes responsible for catalyzing arginine methylation on numerous protein substrates. Among them, type I PRMTs are responsible for generating asymmetric dimethylarginine. By controlling multiple basic cellular processes, such as DNA damage responses, transcriptional regulation, and mRNA splicing, type I PRMTs contribute to cancer initiation and progression. A type I PRMT inhibitor, GSK3368715, has been developed and has entered clinical trials for solid and hematologic malignancies. Although type I PRMTs have been reported to play roles in modulating immune cell function, the immunologic role of tumor-intrinsic pathways controlled by type I PRMTs remains uncharacterized. Here, our The Cancer Genome Atlas dataset analysis revealed that expression of type I PRMTs associated with poor clinical response and decreased immune infiltration in patients with melanoma. In cancer cell lines, inhibition of type I PRMTs induced an IFN gene signature, amplified responses to IFN and innate immune signaling, and decreased expression of the immunosuppressive cytokine VEGF. In immunocompetent mouse tumor models, including a model of T-cell exclusion that represents a common mechanism of anti–programmed cell death protein 1 (PD-1) resistance in humans, type I PRMT inhibition increased T-cell infiltration, produced durable responses dependent on CD8+ T cells, and enhanced efficacy of anti–PD-1 therapy. These data indicate that type I PRMT inhibition exhibits immunomodulatory properties and synergizes with immune checkpoint blockade (ICB) to induce durable antitumor responses in a T cell–dependent manner, suggesting that type I PRMT inhibition can potentiate an antitumor immunity in refractory settings.
    Type of Medium: Online Resource
    ISSN: 2326-6066 , 2326-6074
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2732517-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 10, No. 9 ( 2011-09-01), p. 1542-1552
    Abstract: We describe here the identification and characterization of 2 novel inhibitors of the fibroblast growth factor receptor (FGFR) family of receptor tyrosine kinases. The compounds exhibit selective inhibition of FGFR over the closely related VEGFR2 receptor in cell lines and in vivo. The pharmacologic profile of these inhibitors was defined using a panel of human tumor cell lines characterized for specific mutations, amplifications, or translocations known to activate one of the four FGFR receptor isoforms. This pharmacology defines a profile for inhibitors that are likely to be of use in clinical settings in disease types where FGFR is shown to play an important role. Mol Cancer Ther; 10(9); 1542–52. ©2011 AACR.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2011
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 18, No. 4 ( 2012-02-15), p. 1146-1155
    Abstract: Purpose: We evaluated a novel therapy for primary central nervous system lymphoma (PCNSL) with induction immunochemotherapy with high-dose methotrexate, temozolomide, and rituximab (MT-R) followed by intensive consolidation with infusional etoposide and high-dose cytarabine (EA). In addition, we evaluated the prognostic value of the minimum apparent diffusion coefficient (ADCmin) derived from diffusion-weighted MRI (DW-MRI) in patients treated with this regimen. Experimental Design: Thirty-one patients (median age, 61 years; median Karnofsky performance score, 60) received induction with methotrexate every 14 days for 8 planned cycles. Rituximab was administered the first 6 cycles and temozolomide administered on odd-numbered cycles. Patients with responsive or stable central nervous system (CNS) disease received EA consolidation. Pretreatment DW-MRI was used to calculate the ADCmin of contrast-enhancing lesions. Results: The complete response rate for MT-R induction was 52%. At a median follow-up of 79 months, the 2-year progression-free and overall survival were 45% and 58%, respectively. For patients receiving EA consolidation, the 2-year progression-free and overall survival were 78% and 93%, respectively. EA consolidation was also effective in an additional 3 patients who presented with synchronous CNS and systemic lymphoma. Tumor ADCmin less than 384 × 10–6 mm2/s was significantly associated with shorter progression-free and overall survival. Conclusions: MT-R induction was effective and well tolerated. MT-R followed by EA consolidation yielded progression-free and overall survival outcomes comparable to regimens with chemotherapy followed by whole-brain radiotherapy consolidation but without evidence of neurotoxicity. Tumor ADCmin derived from DW-MRI provided better prognostic information for PCNSL patients treated with the MTR-EA regimen than established clinical risk scores. Clin Cancer Res; 18(4); 1146–55. ©2012 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2012
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 3111-3111
    Abstract: Molecular genomics analyses aim to identify subsets of patients harboring actionable aberrations as a pathway to improved targeted treatment selection. However, recent pan-cancer analyses of the molecular landscape of pediatric cancers1,2 have emphasized the stark contrast with adult cancers, with low mutation rates, distinct mutated genes and a prevalence of structural rearrangements suggesting that genomic analyses alone have limitations for translation into clinical benefit. The Zero Childhood Cancer (ZCC) program aims to assess the feasibility of precision medicine to identify targeted therapeutic agents for patients with high-risk (HR) pediatric malignancies (expected survival & lt;30%). We combine comprehensive molecular profiling analysis [whole genome sequencing (tumor, germline DNA), deep sequencing of a 386 cancer associated gene panel, whole transcriptome (RNASeq), methylation profiling] with in vitro high-throughput drug screening (124 compound library, single agent) and patient-derived xenograft (PDX) drug efficacy testing. Results are curated and recommendations made by a national Multidisciplinary Tumor Board. Recommendations consist of targeted therapy, change of diagnosis or genetics referral for a germline cancer predisposition gene mutation. The national multicenter prospective trial (PRISM) opened in September 2017 at all 8 pediatric oncology centers around Australia, following the successful completion of a 2-year pilot feasibility study. PRISM has enrolled 131 patients to date (35% central nervous system tumors, 29% sarcoma, 13% leukemias/lymphomas, 6% neuroblastoma, 17% other rare or unknown cancers). The unique ZCC testing platform has resulted in at least one recommendation being issued for 67% of patients. Fifteen % of patients have a reportable germline cancer predisposition. We have developed an analytical pipeline to interrogate and cross-validate the full range of variants, structural abnormalities and mutational signatures identified in pediatric cancers and incorporate the molecular data with in vitro and in vivo drug sensitivity data where possible. The highest yield of reportable variants is derived from the integrated analysis of WGS and RNASeq; unique to ZCC compared to other pediatric precision medicine programs internationally. ZCC demonstrates the feasibility of a comprehensive precision medicine platform to identify treatment recommendations in HR pediatric cancer patients. The national trial is planned to run for 3 years, recruiting ~400 patients. In addition, ZCC is partnering nationally and internationally to conduct parallel research studies in immunoprofiling, liquid biopsy, psychosocial impact of precision medicine, health economics and health implementation. 1. Gröbner et al. Nature. 2018; 555(7696):321-327. 2. Ma et al. Nature. 2018; 555(7696):371-376. Citation Format: Emily V. Mould, Loretta Lau, Greg Arndt, Paulette Barahona, Mark J. Cowley, Paul Ekert, Tim Failes, Jamie Fletcher, Andrew Gifford, Dylan Grebert-Wade, Michelle Haber, Alvin Kamili, Amit Kumar, Richard B. Lock, Glenn M. Marshall, Chelsea Mayoh, Murray Norris, Tracey O'Brien, Dong Anh Khuong Quang, Patrick Strong, Alexandra Sherstyuk, Toby Trahair, Maria Tsoli, Katherine Tucker, Meera Warby, Marie Wong, Jinhan Xie, David S. Ziegler, Vanessa Tyrrell. Zero Childhood Cancer: A comprehensive precision medicine platform for children with high-risk cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 3111.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 72, No. 8_Supplement ( 2012-04-15), p. 435-435
    Abstract: There is a large effort in the public domain to systematically perform DNA and RNA sequencing on large numbers of tumor samples. These efforts will bring us to a greater understanding of tumor biology and lead to identification of new tumor drivers. However, these efforts may fall short in allowing us to understand the progression of tumor resistance, relapse and metastasis, factors which make tumors difficult to treat and increase mortality rates. We are currently performing targeted DNA sequencing on 4000 tumor samples. We have selected 1321 genes, 5 GB of the genome to sequence. Genes were selected through a thorough review of the literature, mutation databases and key pathways in tumorigenesis such as growth factor signaling, DNA damage, p53 signaling, cell cycle and apoptosis. Our effort not only includes a diverse panel of breast, colon, ovarian, and kidney tumors but we have also sequenced pancreatic, liver, esophageal, cervix, endometrial, melanoma, CLL, DLBCL and carcinoid tumors. Our dataset also includes approximately 300 matched tumor-metastatic pairs and an additional 550 metastatic samples. Clinical phenotypes, treatment information, gene expression profiling and copy number variation data is available for all samples. To achieve the next level of care for cancer patients we must understand the biology of the tumors we are trying to treat, which are often metastatic and standard of care resistant. We believe that increasing our efforts in targeted DNA sequencing of key tumor and metastatic samples will allow us to achieve these goals. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 435. doi:1538-7445.AM2012-435
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2012
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 14_Supplement ( 2020-07-15), p. IA13-IA13
    Abstract: Despite the increase in overall child cancer survival rates, pediatric malignancies such as high-risk neuroblastoma, high-risk leukemias (including MLL-translocated infant ALL), and aggressive brain tumors (including DIPG) remain refractory to current multimodal therapies. We have been developing new treatment approaches for these aggressive childhood cancers by (i) utilizing novel targeted therapies either alone or combined with other new agents or established chemotherapeutic drugs, and (ii) by developing new drugs that target key pathways in these child cancers. In neuroblastoma, we have targeted polyamines, showing that combined inhibition of polyamine synthesis by the ODC1 inhibitor DFMO, and of polyamine uptake using the small-molecule drug AMXT 1501, is highly effective at inhibiting tumor growth in Th-MYCN transgenic mice. This combination also shows great efficacy in preclinical models of DIPG, and clinical trials for these diseases are now being planned. We are also targeting metabolism of arginine, the precursor of ornithine, using the pegylated-recombinant arginase BCT-100, which significantly delays tumor development and prolongs survival of neuroblastoma-prone Th-MYCN mice. We have further shown that combining BCT-100 with either DFMO or conventional chemotherapy results in increased survival benefit. CBL0137 is a nontoxic novel anticancer drug currently in phase I trial for adult refractory and relapsed cancers. CBL0137 destabilizes nucleosomes and traps histone chaperone FACT into chromatin, thereby modulating several anticancer mechanisms. We have shown that CBL0137 is effective in mouse models of neuroblastoma, MLL-rearranged leukemia, and DIPG, and that its action is potentiated by the HDAC inhibitor, panobinostat. Moreover, we have developed OT-82, a novel nontoxic NAMPT inhibitor with impressive anticancer activity against mouse models of high-risk childhood ALL, potentiating standard-of-care drugs, and showing similar efficacy as the three-drug induction-type treatment used for pediatric ALL. In addition, for all Australian children with high-risk malignancies, we have developed the Zero Childhood Cancer national precision medicine program. ZERO utilizes whole-genome and whole-transcriptome sequencing, methylation profiling, and where possible, in vitro and in vivo drug testing. To date (July 2019), 74% of 207 patients on the national clinical trial have received a Multidisciplinary Tumor Board recommendation (therapy, germline referral, or change of diagnosis), and of 25 patients with evaluable response data thus far who have received the ZERO recommended therapy, a significant proportion have had a complete response, partial response, or maintained stable disease. Moreover, early experience with drug efficacy studies suggests these data may corroborate genomic therapeutic recommendations and may also identify unanticipated active therapeutics. Citation Format: Michelle Haber, Laura Gamble, Lin Xiao, Ruby Pandher, Klaartje Somers, Jayne Murray, Aaminah Khan, Denise Yu, Laura Franshaw, Mark R. Burns, Maria Tsoli, Anahid Ehteda, Anthony Cesare, Aisling O’Connor, Francis Mussai, Carmela de Santo, Paul Cheng, Lioubov Korotchkina, Katerina Gurova, Vanessa Tyrrell, Emily Mould, Loretta Lau, Dong Anh Khuong Quang, Chelsea Mayoh, Greg Arndt, Paulette Barahona, Tim Failes, Jamie Fletcher, Noemi Fuentes- Bolanos, Marie-Emilie Gauthier, Andrew Gifford, Dylan Grebert-Wade, Alvin Kamili, Amit Kumar, Sumanth Nagabushan, Tracey O’Brien, Patrick Strong, Alexandra Sherstyuk, David Thomas, Toby Trahair, Katherine Tucker, Meera Warby, Marie Wong, Jinhan Xie, Kathryn Evans, Richard Lock, Olga B. Chernova, Michelle Henderson, Andrei V Gudkov, Paul Ekert, Mark J. Cowley, Glenn M. Marshall, David S. Ziegler, Murray D. Norris. Molecular targeted therapies and precision medicine for children with neuroblastoma and other refractory malignancies [abstract]. In: Proceedings of the AACR Special Conference on the Advances in Pediatric Cancer Research; 2019 Sep 17-20; Montreal, QC, Canada. Philadelphia (PA): AACR; Cancer Res 2020;80(14 Suppl):Abstract nr IA13.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages