Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (2)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 75, No. 23_Supplement ( 2015-12-01), p. B12-B12
    Abstract: Reactivation of telomerase reverse transcriptase (TERT) expression enables cells to overcome replicative senescence and escape apoptosis, fundamental steps in the initiation of human cancer. Multiple cancer types, including up to 83% of glioblastomas (GBM), harbor highly recurrent mutations in the TERT promoter specific to two nucleotide positions. The common mutation sites, G228A and G250A, may create de-novo ETS family transcription factor binding sites, but the precise mechanism of how these mutations confer increased TERT expression has been elusive. Here, we demonstrate the de-novo ETS motif to be critical for mutant TERT activation by site directed mutagenesis. A focused siRNA screen of the many ETS transcription factors expressed in GBM identifies GABPA as the single ETS factor to selectively regulate the mutant but not the wild type TERT promoter. Single molecule binding assays and ChIP-qPCR analysis reveal that GABPA is exclusively recruited to the mutant allele in vitro and in vivo respectively. Furthermore, this allelic recruitment is consistent across four tested cancer types, highlighting a shared mechanism underlying mutant TERT promoter activation. Tandem flanking native ETS motifs critically cooperate with these mutations to activate TERT, likely by facilitating GABP heterotetramer binding. GABP thus directly links TERT promoter mutations to aberrant expression and may provide a novel therapeutic target for multiple cancers. Citation Format: Robert J.A Bell, H. Tomas Rube, Alex Kreig, Andrew Mancini, Shaun F. Fouse, Raman P. Nagarajan, Serah Choi, Chibo Hong, Daniel He, Melike Pekmezci, John K. Wiencke, Margaret R. Wrensch, Susan M. Chang, Kyle M. Walsh, Sua Myong, Jun S. Song, Joseph F. Costello. GABP selectively binds and activates the mutant TERT promoter across multiple cancer types. [abstract]. In: Proceedings of the AACR Special Conference: Advances in Brain Cancer Research; May 27-30, 2015; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2015;75(23 Suppl):Abstract nr B12.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2016
    In:  Molecular Cancer Research Vol. 14, No. 4 ( 2016-04-01), p. 315-323
    In: Molecular Cancer Research, American Association for Cancer Research (AACR), Vol. 14, No. 4 ( 2016-04-01), p. 315-323
    Abstract: Telomerase (TERT) activation is a fundamental step in tumorigenesis. By maintaining telomere length, telomerase relieves a main barrier on cellular lifespan, enabling limitless proliferation driven by oncogenes. The recently discovered, highly recurrent mutations in the promoter of TERT are found in over 50 cancer types, and are the most common mutation in many cancers. Transcriptional activation of TERT, via promoter mutation or other mechanisms, is the rate-limiting step in production of active telomerase. Although TERT is expressed in stem cells, it is naturally silenced upon differentiation. Thus, the presence of TERT promoter mutations may shed light on whether a particular tumor arose from a stem cell or more differentiated cell type. It is becoming clear that TERT mutations occur early during cellular transformation, and activate the TERT promoter by recruiting transcription factors that do not normally regulate TERT gene expression. This review highlights the fundamental and widespread role of TERT promoter mutations in tumorigenesis, including recent progress on their mechanism of transcriptional activation. These somatic promoter mutations, along with germline variation in the TERT locus also appear to have significant value as biomarkers of patient outcome. Understanding the precise molecular mechanism of TERT activation by promoter mutation and germline variation may inspire novel cancer cell-specific targeted therapies for a large number of cancer patients. Mol Cancer Res; 14(4); 315–23. ©2016 AACR.
    Type of Medium: Online Resource
    ISSN: 1541-7786 , 1557-3125
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2097884-4
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages