Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (9)
  • 1
    In: Molecular Cancer Research, American Association for Cancer Research (AACR), Vol. 18, No. 10_Supplement ( 2020-10-01), p. B33-B33
    Abstract: Aberrant protein translation plays a role in the pathogenesis of multiple solid tumors and hematologic malignancies. The translation initiation factor eIF4E is essential for the translation of m7G-capped mRNA and is a key point of convergence for several signaling pathways, such as PI3K/mTOR and MAPK, which are intimately involved in tumor cell growth and survival. As such, eIF4E has generated intense interest as a target for anticancer drug discovery. We have designed a series of potent, selective, and orally available m7G cap-competitive inhibitors of eIF4E (eFT-4Ei) with favorable drug-like properties. These inhibitors bind free eIF4E, eIF4E-4EBP and eIF4E-eIF4F complexes within tumor cells. Ribosomal profiling of eIF4E inhibitor-treated tumor cells has identified a subset of translationally regulated target genes that overlap with mTORC1/2 regulated genes, but also include a larger set of unique translationally regulated target mRNAs that are enriched for 5'-TOP, PRTE and CERT sequence elements in their 5'-untranslated regions. eIF4E inhibition results in potent antiproliferative activity and induction of apoptosis in a subset of tumor cell lines. Consistent with this observation, our eIF4E inhibitors show some similarities, yet several important differences from existing mTORC1 or mTORC1/2 dual inhibitors in both cellular and physiologic assays. Finally, significant antitumor efficacy was observed with eIF4E inhibition in both solid tumor and hematologic xenografts in vivo. Taken together, these results highlight the potential of targeting eIF4E as a novel and differentiated therapeutic strategy to treat cancer. Citation Format: Gregory S. Parker, Ivy N.J. Hung, Jocelyn Staunton, Maria Barrera, Eric Sung, Ana Parra, Craig R. Stumpf, Joan Chen, Peggy A. Thompson, Andreas Nevarez, Christopher J. Wegerski, Jeff Clarine, Samuel Sperry, Alan Xiang, Christian Nilewski, Garrick K. Packard, Kaveri Urklalan, Takasuke Mukaiyama, Theo Michels, Justin T. Ernst, Paul A. Sprengeler, Siegfried H. Reich, Gary G. Chiang, Kevin R. Webster. Targeting PI3K/mTOR signaling with potent, selective and orally-available small-molecule inhibitors of eIF4E [abstract]. In: Proceedings of the AACR Special Conference on Targeting PI3K/mTOR Signaling; 2018 Nov 30-Dec 8; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Res 2020;18(10_Suppl):Abstract nr B33.
    Type of Medium: Online Resource
    ISSN: 1541-7786 , 1557-3125
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2097884-4
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 6_Supplement ( 2017-03-15), p. PR11-PR11
    Abstract: Purpose: This study was designed to evaluate the potential of eFT508 to selectively regulate key immune signaling pathways and enhance anti-tumor immunity as a monotherapy or in combination with checkpoint blockade in immunocompetent syngeneic cancer models. Methods: eFT508 and its effect on mRNA translation, effector protein production, immune cell signaling and tumor infiltrating lymphocytes was evaluated in vitro using normal human T cells and in vivo utilizing immunocompetent syngeneic models. The mechanism of translational regulation of specific target genes was further evaluated in these model systems. Results: Dysregulated translation of messenger RNA (mRNA) plays a role in the pathogenesis of multiple solid tumors and hematological malignancies. MNK1 and MNK2 integrate signals from several oncogenic and immune signaling pathways (including RAS, p38 and toll-like receptors) by phosphorylating eukaryotic initiation factor 4E (eIF4E) and other key effector proteins including hnRNPA1 and PSF. Phosphorylation of these RNA-binding proteins by MNK1 and MNK2 selectively regulates the stability and translation of a subset of cellular mRNA that control tumor/stromal cell signaling and the tumor microenvironment. eFT508 inhibits both MNK1 and MNK2 through a reversible, ATP-competitive mechanism of action with an IC50 of 2 and 1 nM against MNK1 and MNK2 respectively. eFT508 is highly selective (≥100-fold) for MNK1 and MNK2 relative to over 400 other protein and lipid kinases. Ribosome profiling has demonstrated that inhibition of MNK1 and MNK2 by eFT508 selectively regulates the translational efficiency and mRNA stability of a subset of genes that include inflammatory cytokines/chemokines, regulators of reactive oxygen species (ROS), and effectors of anti-tumor immune response. Given the importance of both RAS signaling and translational control to immune cell function the immunological effect of eFT508 was evaluated in both normal human T cells in vitro and immunocompetent syngeneic cancer models in vivo. eFT508 treatment of normal donor T cells has no deleterious effect on CD3/CD28 activation of IL-2 production, T cell proliferation or on T cell viability. However, eFT508 selectively down regulates the induction of IL-10 and specific immune checkpoint mechanisms. The effect of eFT508 on IL-10 protein production corresponded with reduced mRNA stability. The in vivo antitumor effect of eFT508 was assessed in the CT26 BALB/C syngeneic tumor model. CT26 mouse tumor cell proliferation and survival are insensitive to eFT508 in vitro. In vivo, daily oral treatment with 1 mg/kg eFT508 results in significant anti-tumor activity and establishment of immune memory. In addition, combination of daily oral treatment of 1 mg/kg eFT508 with either anti-PD-1 or anti-PD-L1 monoclonal antibodies increases the number of responder animals and results in synergistic activity that corresponds to the modulation of tumor infiltrating lymphocyte populations. Conclusions: eFT508 is a selective, orally bioavailable small molecule inhibitor of MNK1 and MNK2 that can decrease the production of key immune checkpoint regulators and immunosuppressive cytokines. This novel mechanism of action triggers anti-tumor immune response in immunocompetent syngeneic animal models as a monotherapy and in combination with established immune checkpoint antibodies. eFT508 is currently under evaluation in two phase I clinical trials for patients with advanced solid tumors and patients with advanced lymphoma respectively. These findings support further clinical evaluation of eFT508 in combination with checkpoint blockade. This abstract is also being presented as Poster B29. Citation Format: Kevin R. Webster, Vikas K. Goel, Jocelyn Staunton, Ivy NJ Hung, Gregory S. Parker, Craig R. Stumpf, Jolene Molter, Gary G. Chiang, Christopher J. Wegerski, Samuel Sperry, Joan Chen, Vera Huang, Peggy A. Thompson, Chinh Tran, Justin T. Ernst, Stephen E. Webber, Paul A. Sprengeler, Siegfried H. Reich. eFT508: An oral, potent and highly selective inhibitor of MNK1 and MNK2, promotes anti-tumor immunity as a monotherapy and in combination with immune checkpoint blockade. [abstract]. In: Proceedings of the AACR Special Conference on Translational Control of Cancer: A New Frontier in Cancer Biology and Therapy; 2016 Oct 27-30; San Francisco, CA. Philadelphia (PA): AACR; Cancer Res 2017;77(6 Suppl):Abstract nr PR11.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 1302-1302
    Abstract: The PI3K/mTOR pathway is commonly dysregulated in many hormone receptor-dependent tumors and plays a key role in promoting tumor growth and mediating drug resistance. In particular, PI3K and mTORC1/2 inhibitors have been intensively studied in the treatment of hormone receptor-dependent cancers and have shown benefit in some clinical settings. However, issues such as dose-limiting toxicities and emergent resistance limit the broader utility of these inhibitors. The translation initiation factor eIF4E is essential for the translation of m7G-capped mRNA and is a key point of convergence for both the PI3K/mTOR and MAPK signaling pathways. We have designed a series of potent, selective and orally-available m7G cap-competitive inhibitors of eIF4E (eFT-4Ei) with favorable drug-like properties. These inhibitors bind to eIF4E either as its free form or with eIF4E-4EBP and eIF4F complexes within tumor cells and downregulate hormone receptor-dependent signaling. Ribosomal profiling of eIF4E inhibitor-treated tumor cells identified a subset of translationally regulated target genes that overlap with mTORC1/2 regulated genes, but also a unique set of translationally regulated target mRNAs. Consistent with this observation, our eIF4E inhibitors show some similarities yet several important differences from existing mTORC1 or mTORC1/2 dual inhibitors in both cellular and physiological assays. Finally, significant anti-tumor efficacy was observed with eIF4E inhibition in vitro and in vivo. Taken together, these results highlight the potential for targeting eIF4E as a novel therapeutic strategy to treat hormone-receptor dependent cancers. Citation Format: Gary G. Chiang, Gregory S. Parker, Ivy N. Hung, Vikas K. Goel, Jocelyn Staunton, Maria Barrera, Eric Sung, Ana Parra, Craig R. Stumpf, Joan Chen, Peggy A. Thompson, Andreas Nevarez, Christopher J. Wegerski, Cody Parker, Jeff Clarine, Samuel Sperry, Alan Xiang, Christian Nilewski, Garrick K. Packard, Kaveri Urkalan, Takasuke Mukaiyama, Theo Michels, Justin T. Ernst, Paul A. Sprengeler, Siegfried H. Reich, Kevin R. Webster. Targeting hormone receptor-dependent cancers with potent, selective and orally-available small molecule inhibitors of eIF4E [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 1302.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. 596-596
    Abstract: Dysregulated translation of messenger RNA (mRNA) plays a role in the pathogenesis of multiple solid tumors and hematological malignancies. MNK1 and MNK2 integrate signals from several oncogenic and immune signaling pathways (including RAS, Toll-like receptors and T cell receptor) by phosphorylating eukaryotic initiation factor 4E (eIF4E) and other key effector proteins including hnRNPA1 and PSF. Phosphorylation of these RNA-binding proteins by MNK1 and MNK2 selectively regulates the stability and translation of a subset of cellular mRNA that control tumor/stromal cell signaling, the tumor microenvironment and immune cell function. eFT508 is a potent and highly selective inhibitor of both MNK1 and MNK2. Ribosome profiling has demonstrated that inhibition of MNK1 and MNK2 by eFT508 selectively regulates the translational efficiency and mRNA stability of a subset of genes that include inflammatory cytokines/chemokines, regulators of stress response, and effectors of anti-tumor immune response. Given the importance of MAPK signaling and translational control to immune cell activation and differentiation, the immunological effect of eFT508 was further evaluated in both normal human immune cells in vitro and immunocompetent syngeneic cancer models in vivo. eFT508 treatment of normal donor T cells has no deleterious effect on αCD3/αCD28 stimulated IL-2 production, T cell proliferation or T cell viability. However, eFT508 selectively down regulates the induction of IL-10 and specific immune checkpoint receptors, including PD-1 and LAG3. Further evaluation of the mechanism of translational regulation has shown LAG3 mRNA contains specific sequence elements in the 5’-untranslated region (UTR) that confer sensitivity to eFT508. In addition, IL-10 mRNA is destabilized upon treatment with eFT508 leading to significant inhibition of IL-10 production in activated T cells. Furthermore, eFT508 treatment results in upregulation of MHC class II molecules on tumor cells, macrophage and dendritic cells through an IL-10/MARCH1 dependent mechanism. The in vivo antitumor effect of eFT508 was assessed in the CT26 BALB/C syngeneic tumor model. CT26 mouse tumor cell proliferation and survival are insensitive to eFT508 in vitro. In vivo, daily oral treatment with 1 mg/kg eFT508 results in significant anti-tumor activity, modulation of tumor infiltrating lymphocytes and establishment of immune memory. In addition, combination of eFT508 with either anti-PD-1 or anti-PD-L1 monoclonal antibodies results in marked efficacy, significantly increasing the percentage of responder animals. eFT508 is currently under evaluation in two phase I/II clinical trials for patients with advanced solid tumors and patients with advanced lymphoma respectively. These findings support further clinical evaluation of eFT508 in combination with checkpoint blockade. Citation Format: Kevin R. Webster, Vikas K. Goel, Jocelyn Staunton, Craig R. Stumpf, Rajesh Sharma, Ivy N. Hung, Gregory S. Parker, Jolene Molter, Gary G. Chiang, Christopher J. Wegerski, Samuel Sperry, Vera Huang, Joan Chen, Peggy A. Thompson, Chinh Tran, Justin T. Ernst, Paul A. Sprengeler, Siegfried H. Reich. eFT508, a potent and highly selective inhibitor of MNK1/2 regulates immune checkpoint and cytokine expression promoting anti-tumor immunity [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 596. doi:10.1158/1538-7445.AM2017-596
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 18, No. 12_Supplement ( 2019-12-01), p. B133-B133
    Abstract: Background: Mutations or amplifications affecting receptor tyrosine kinases (RTKs) activate the RAS/MAPK and PI3K/AKT signaling pathways thereby promoting cancer cell proliferation and survival. Oncoprotein expression is tightly controlled at the level of mRNA translation and is regulated by the eukaryotic translation initiation factor 4F (eIF4F) complex consisting of eIF4A, eIF4E, and eIF4G. eIF4A functions to catalyze the unwinding of secondary structure in the 5’-untranslated region (5’-UTR) of mRNA facilitating ribosome scanning and translation initiation. eFT226 is a first in class inhibitor that converts eIF4A1 into a sequence specific translational repressor. eFT226 increases the affinity between eIF4A1 and polypurine recognition elements in the 5’-UTR leading to selective downregulation of mRNA translation. The polypurine element is highly enriched in the 5’-UTR of eFT226 target genes, many of which are known oncogenic drivers, including FGFR1/2 and HER2, enabling eFT226 to selectively inhibit dysregulated oncogene expression. Methods: 5’-UTR dependency was evaluated using cell-based luciferase reporter assays. Regulation of protein expression was analyzed by western blot analysis. Antitumor activity was assessed in vitro by proliferation and apoptosis assays. For in vivo experiments, athymic nude or NOD/SCID mice were implanted with subcutaneous xenograft models of FGFR1, FGFR2 or HER2 driven tumors and treated with eFT226 administered Q4D IV. Results: eFT226 inhibits the translation of FGFR1, FGFR2 and HER2 through formation of a sequence dependent ternary complex with eIF4A1 and polypurine elements within the 5’-UTR of mRNA [eFT226-eIF4A1-mRNA]. Formation of this ternary complex blocks ribosome scanning along the 5’-UTR leading to dose dependent inhibition of RTK protein expression. Cells transiently transfected with luciferase reporter constructs containing the 5’-UTR of each RTK resulted in 10-45-fold greater sensitivity to inhibition by eFT226 compared to a control 5’-UTR confirming the 5’-UTR dependency. In solid tumor cell lines driven by alterations in FGFR1, FGFR2 or HER2, downregulation of RTK expression by eFT226 resulted in decreased MAPK and AKT signaling, potent inhibition of cell proliferation and an induction of apoptosis suggesting that eFT226 could be effective in treating tumor types dependent on these oncogenic drivers. Solid tumor xenograft models harboring FGFR1/2 or HER2 amplifications treated with eFT226 resulted in significant in vivo tumor growth inhibition and regression at well tolerated doses in breast, non-small cell lung and colorectal cancer models. Treatment with eFT226 also decreased RTK protein levels supporting the potential to use these eFT226 target genes as pharmacodynamic markers of target engagement. Conclusions: eFT226 is efficacious against tumor models with alterations in FGFR1, FGFR2 and HER2 RTKs. The antitumor response observed in preclinical in vivo models driven by RTK amplifications demonstrates the potential for eFT226 in the treatment of solid tumors with FGFR1/2 or HER2 alterations. Furthermore, this data provides a means to select sensitive patient subsets during clinical development. Clinical trials in patients with solid tumor malignancies are planned. Citation Format: Peggy A Thompson, Nathan P Young, Craig R Stumpf, Boreth Eam, Vikas K Goel, Joan Chen, Sarah Fish, Gregory S Parker, Adina Gerson-Gurwitz, Maria Barrera, Eric Sung, Jocelyn Staunton, Gary G Chiang, Christopher J Wegerski, Samuel Sperry, Kevin R Webster, Siegfried H Reich. eFT226, a first in class inhibitor of eIF4A1, targets FGFR1/2 and HER2 driven cancers [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics; 2019 Oct 26-30; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2019;18(12 Suppl):Abstract nr B133. doi:10.1158/1535-7163.TARG-19-B133
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. DDT02-05-DDT02-05
    Abstract: eFT226: A Selective and Highly Potent Inhibitor of Eukaryotic Initiation Factor 4A (eIF4A), a Novel Approach for the Treatment of Cancer Siegfried H Reich, Peggy A Thompson, Justin T Ernst, Boreth Eam, Nathan P Young, Sarah Fish, Joan Chen, Maria Barrera, Haleigh Howard, Ana Parra, Eric Sung, Jocelyn Staunton, Ivy NJ Hung, Gregory S Parker, Gary G Chiang, Christopher J Wegerski, Andres Nevarez, Jeff Clarine, Samuel Sperry, Alan Xiang, Chinh Tran, Christian Nilewski, Garrick K Packard, Theodore Michels, Paul A Sprengeler, and Kevin R Webster Effector Therapeutics, San Diego, CA Oncoprotein expression is tightly controlled at the level of RNA translation which is largely regulated by the eukaryotic translation initiation factor 4F (eIF4F). eIF4A1, a component of the eIF4F complex, catalyzes the ATP dependent unwinding of RNA duplexes and facilitates 43S ribosome complex scanning within the 5'-untranslated region (UTR). eIF4A1 is required for efficient translation of key oncogenes that contain complex secondary structures within the 5'-UTR. eFT226 is a novel, potent and selective eIF4A small molecule inhibitor with excellent physicochemical and pharmaceutical properties. The design of eFT226 involved ab initio ligand-based methods coupled with small molecule crystal structure analysis. eFT226 inhibits eIF4A1 through a reversible sequence-selective enhancement of eIF4A1 binding to mRNA with specific polypurine motifs within the 5'-UTR. The formation of a stable ternary complex [eIF4A1/eFT226/mRNA] with specific sequence recognition motifs leads to a block in ribosome scanning of select mRNAs. Treatment of lymphoma, AML, breast, colorectal, lung and hepatocellular tumor cell lines with eFT226 led to a dose dependent translational down regulation (IC50 of ~5-20 nM) of key oncogenes that drive tumor cell survival and proliferation (i.e., c-MYC, CCND1, BCL2 and MCL-1). Oncogene down regulation results in potent inhibition of cellular proliferation (GI50 of ~2-30 nM) across a panel of tumor cell lines. Enhanced anti-tumor sensitivity and a rapid induction of apoptosis was observed in hematological cell lines including lymphoma and AML. Inhibition of tumor cell proliferation and survival with eFT226 treatment results in significant antitumor activity in vivo in multiple human tumor models of DLBCL, Burkitt's lymphoma, acute myeloid leukemia (AML), and solid tumors following ≤ 1 mg/kg/week IV administration. eFT226 regulates the protein expression of multiple metabolic markers (i.e. c-MYC, HK2, TXNIP and GLUT1) that result in inhibition of tumor glucose uptake supporting the use of 18F-FDG-PET imaging as a measure of eFT226 target engagement in the clinic. These data demonstrate that eFT226 is a sequence-selective translational repressor of key oncogenic drivers tha t are essential for tumor cell proliferation and survival and support the clinical development of eFT226 in cancer patients. Citation Format: Siegfried H. Reich, Peggy A. Thompson, Justin T. Ernst, Boreth Eam, Nathan P. Young, Sarah Fish, Joan Chen, Maria Barrera, Haleigh Howard, Ana Parra, Eric Sung, Jocelyn Staunton, Ivy Nj Hung, Gregory S. Parker, Gary G. Chiang, Christopher J. Wegerski, Andres Nevarez, Jeff Clarine, Samuel Sperry, Alan Xiang, Chinh Tran, Christian Nilewski, Garrick K. Packard, Theodore Michels, Paul A. Sprengeler, Kevin R. Webster. eFT226: A selective and highly potent inhibitor of eukaryotic initiation factor 4A (eIF4A), a novel approach for the treatment of cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr DDT02-05.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 2698-2698
    Abstract: Dysregulated messenger RNA (mRNA) translation drives the pathogenesis of multiple hematological malignancies. In lymphoma this includes the upregulation of key driver oncogenes and anti-apoptotic proteins (e.g., MYC, CCND1/3, BCL2 and MCL1) that contain a highly structured 5’-untranslated region (UTR) in their mRNA requiring enhanced eIF4A helicase activity for translation. eIF4A is a component of the eIF4F translation initiation complex and catalyzes the ATP-dependent unwinding of RNA duplexes and facilitates 43S ribosome scanning within the 5’-UTR. The activation of oncogenic signaling pathways, including RAS and PI3K, enhance eIF4A activity through phosphorylation of eIF4B, eIF4G and PDCD4 which facilitates formation of eIF4F and full activation of eIF4A. The PI3K/AKT/mTOR pathway is frequently activated in lymphoma, promoting the translation of oncogenes with complex 5’-UTRs that are required for tumor cell proliferation, survival and metastasis. eFT226 is a potent and sequence selective eIF4A1 inhibitor that promotes eIF4A1 binding to specific 5’-UTR polypurine and/or G-quadraplex recognition motifs leading to a selective block in ribosome mRNA scanning. The sequence dependency of eFT226 translational inhibition was evaluated in cell-based reporter assays demonstrating & gt;100-fold greater sensitivity for reporter constructs containing a polypurine motif in the 5’-UTR (IC50 ~2 nM). Direct binding studies also confirmed the formation of a stable ternary complex with increased drug residence time between eFT226, eIF4A1 and RNA oligonucleotides containing polypurine motifs. The ability of eFT226 to inhibit MYC or MCL1 expression was found to be dependent on the presence of their respective 5’-UTR supporting a translational regulation mechanism dependent on recognition elements within the 5’-UTR. eFT226 shows potent anti-proliferative activity (GI50 & lt; 15 nM) against a panel of B-cell lymphoma cell lines. Treatment with eFT226 leads to coordinated inhibition of MYC, CCND1/3, BCL2 or MCL1 protein expression resulting in significant anti-tumor activity. eFT226 has good pharmacokinetic properties and exhibits significant in vivo activity across a panel of diffuse large B cell lymphoma (DLBCL), and Burkitt lymphoma tumor models with ≤1 mg/kg/week IV administration. Further evaluation of predictive markers of sensitivity or resistance has shown that tumors with mTOR mediated activation of eIF4A are most sensitive to eFT226. In addition, tumors with PTEN mutations do not exhibit activated eIF4A and are generally resistant to induction of apoptosis by eFT226, resulting in reduced in vivo efficacy. The association of eFT226 activity with PI3K/mTOR pathway activation and mutational status provides a means to identify patient subsets during clinical development. Clinical trials in patients with lymphoma and other malignancies are planned. Citation Format: Peggy A. Thompson, Boreth Eam, Nathan P. Young, Sarah Fish, Joan Chen, Maria Barrera, Haleigh Howard, Eric Sung, Ana Parra, Jocelyn Staunton, Gary G. Chiang, Christopher J. Wegerski, Andres Nevarez, Jeff Clarine, Samuel Sperry, Alan Xiang, Chinh Tran, Christian Nilewski, Garrick K. Packard, Theodore Michels, Paul A. Sprengeler, Justin T. Ernst, Siegfried H. Reich, Kevin R. Webster. eFT226, a potent and selective inhibitor of eIF4A, is efficacious in preclinical models of lymphoma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 2698.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 20, No. 1 ( 2021-01-01), p. 26-36
    Abstract: The PI3K/AKT/mTOR pathway is often activated in lymphoma through alterations in PI3K, PTEN, and B-cell receptor signaling, leading to dysregulation of eIF4A (through its regulators, eIF4B, eIF4G, and PDCD4) and the eIF4F complex. Activation of eIF4F has a direct role in tumorigenesis due to increased synthesis of oncogenes that are dependent on enhanced eIF4A RNA helicase activity for translation. eFT226, which inhibits translation of specific mRNAs by promoting eIF4A1 binding to 5′-untranslated regions (UTR) containing polypurine and/or G-quadruplex recognition motifs, shows potent antiproliferative activity and significant in vivo efficacy against a panel of diffuse large B-cell lymphoma (DLBCL), and Burkitt lymphoma models with ≤1 mg/kg/week intravenous administration. Evaluation of predictive markers of sensitivity or resistance has shown that activation of eIF4A, mediated by mTOR signaling, correlated with eFT226 sensitivity in in vivo xenograft models. Mutation of PTEN is associated with reduced apoptosis in vitro and diminished efficacy in vivo in response to eFT226. In models evaluated with PTEN loss, AKT was stimulated without a corresponding increase in mTOR activation. AKT activation leads to the degradation of PDCD4, which can alter eIF4F complex formation. The association of eFT226 activity with PTEN/PI3K/mTOR pathway regulation of mRNA translation provides a means to identify patient subsets during clinical development.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 27, No. 8_Supplement ( 2021-04-15), p. PO-006-PO-006
    Abstract: For & gt;75 years radioiodide (RAI) has been used to target metastases and safely and specifically destroy remaining thyroid cancer cells post-surgery. Despite this, activity of the sodium iodide symporter (NIS) – the sole conduit for cellular iodide uptake – is diminished in 25-50% of thyroid cancers, limiting adequate RAI uptake for effective therapeutic ablation. Thus, identifying targetable processes that govern NIS function is urgently needed to enhance RAI uptake and diminish recurrent thyroid cancer. Here we utilized the mutated yellow fluorescent protein (YFP) as a surrogate biosensor of intracellular iodide and screened 1200 drugs (95% FDA approved), allowing us to identify putative candidate drugs which increased iodide uptake. Categorization revealed a high proportion of drugs that modulate the proteostasis network (20/50 top candidate drugs; 40%), including key processes in protein homeostasis such as endoplasmic reticulum-associated protein degradation (ERAD) and autophagy. Secondary screening validated the activity of proteostasis modulators in enhancing iodide uptake after ranking 73 compounds based on their pharmacologic properties (AUC, EC50) and specificity of response (NIS+ve vs NIS-ve YFP-thyroid cells) at ten different drug doses (0.1-50 uM). Dose-dependent increases in 125I uptake were apparent across multiple cancer cell models, as well as human primary thyrocytes, implying that proteostatic and related pathways are central to the innate control of NIS function. Subsequent mechanistic insight allowed us to evolve entirely novel combinatorial drug strategies, routinely leading to robust and significant & gt; 5-fold increases in RAI uptake (all p & lt; 0.001). Appraisal of TCGA to study the clinical relevance of proteostasis modulators identified significant dysregulation of 13 core proteostasis genes linked to recurrence in RAI-treated papillary thyroid cancer (PTC) compared to non-recurrent controls (all p & lt; 0.05). Critically, a predictive risk model based on these 13 genes showed that RAI-treated PTC patients at high risk had a significantly worse prognosis than those at low risk [Hazard Ratio (HR) = 35.87, 95% CI 4.81-267.41; p & lt; 0.001; n =137]. By comparison, there was no difference in the prognosis of non-RAI treated PTC patients stratified into risk groups. Moreover, after controlling for age, gender, disease stage, tumor stage and node status, multivariate analysis showed that the 13 proteostasis gene risk score classifier was the sole independent predictive factor for thyroid cancer recurrence (HR = 4.55, 95% CI 2.38-8.70; p & lt; 0.001) in the entire TCGA cohort (n = 438). Whilst oncogene activation can suppress NIS expression and function, our study has identified new non-canonical pathways that govern radioiodide uptake. Collectively, we therefore propose a new model for the targetable steps of intracellular processing of NIS, with translatable potential to address the current lack of clinical options for patients treated with RAI who typically have poorer clinical outcomes. Citation Format: Martin L. Read, Katie Brookes, Caitlin E.M. Thornton, Hannah R. Nieto, Alice Fletcher, Patricia Borges de Souza, Mohammed Alshahrani, Ling Zha, Jamie R.M. Webster, Luke J. Alderwick, Kristien Boelaert, Vicki E. Smith, Christopher J. McCabe. Exploiting non-canonical pathways of NIS regulation to enhance radioiodide uptake and identify predictive markers of recurrence in thyroid cancer [abstract]. In: Proceedings of the AACR Virtual Special Conference on Radiation Science and Medicine; 2021 Mar 2-3. Philadelphia (PA): AACR; Clin Cancer Res 2021;27(8_Suppl):Abstract nr PO-006.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages