Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Diabetes Association  (5)
  • 1
    In: Diabetes Care, American Diabetes Association, Vol. 41, No. 9 ( 2018-09-01), p. 1887-1894
    Abstract: We tested the ability of a type 1 diabetes (T1D) genetic risk score (GRS) to predict progression of islet autoimmunity and T1D in at-risk individuals. RESEARCH DESIGN AND METHODS We studied the 1,244 TrialNet Pathway to Prevention study participants (T1D patients’ relatives without diabetes and with one or more positive autoantibodies) who were genotyped with Illumina ImmunoChip (median [range] age at initial autoantibody determination 11.1 years [1.2–51.8], 48% male, 80.5% non-Hispanic white, median follow-up 5.4 years). Of 291 participants with a single positive autoantibody at screening, 157 converted to multiple autoantibody positivity and 55 developed diabetes. Of 953 participants with multiple positive autoantibodies at screening, 419 developed diabetes. We calculated the T1D GRS from 30 T1D-associated single nucleotide polymorphisms. We used multivariable Cox regression models, time-dependent receiver operating characteristic curves, and area under the curve (AUC) measures to evaluate prognostic utility of T1D GRS, age, sex, Diabetes Prevention Trial–Type 1 (DPT-1) Risk Score, positive autoantibody number or type, HLA DR3/DR4-DQ8 status, and race/ethnicity. We used recursive partitioning analyses to identify cut points in continuous variables. RESULTS Higher T1D GRS significantly increased the rate of progression to T1D adjusting for DPT-1 Risk Score, age, number of positive autoantibodies, sex, and ethnicity (hazard ratio [HR] 1.29 for a 0.05 increase, 95% CI 1.06–1.6; P = 0.011). Progression to T1D was best predicted by a combined model with GRS, number of positive autoantibodies, DPT-1 Risk Score, and age (7-year time-integrated AUC = 0.79, 5-year AUC = 0.73). Higher GRS was significantly associated with increased progression rate from single to multiple positive autoantibodies after adjusting for age, autoantibody type, ethnicity, and sex (HR 2.27 for GRS & gt;0.295, 95% CI 1.47–3.51; P = 0.0002). CONCLUSIONS The T1D GRS independently predicts progression to T1D and improves prediction along T1D stages in autoantibody-positive relatives.
    Type of Medium: Online Resource
    ISSN: 0149-5992 , 1935-5548
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2018
    detail.hit.zdb_id: 1490520-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Diabetes Care, American Diabetes Association, Vol. 42, No. 2 ( 2019-02-01), p. 192-199
    Abstract: There are variable reports of risk of concordance for progression to islet autoantibodies and type 1 diabetes in identical twins after one twin is diagnosed. We examined development of positive autoantibodies and type 1 diabetes and the effects of genetic factors and common environment on autoantibody positivity in identical twins, nonidentical twins, and full siblings. RESEARCH DESIGN AND METHODS Subjects from the TrialNet Pathway to Prevention Study (N = 48,026) were screened from 2004 to 2015 for islet autoantibodies (GAD antibody [GADA], insulinoma-associated antigen 2 [IA-2A] , and autoantibodies against insulin [IAA]). Of these subjects, 17,226 (157 identical twins, 283 nonidentical twins, and 16,786 full siblings) were followed for autoantibody positivity or type 1 diabetes for a median of 2.1 years. RESULTS At screening, identical twins were more likely to have positive GADA, IA-2A, and IAA than nonidentical twins or full siblings (all P & lt; 0.0001). Younger age, male sex, and genetic factors were significant factors for expression of IA-2A, IAA, one or more positive autoantibodies, and two or more positive autoantibodies (all P ≤ 0.03). Initially autoantibody-positive identical twins had a 69% risk of diabetes by 3 years compared with 1.5% for initially autoantibody-negative identical twins. In nonidentical twins, type 1 diabetes risk by 3 years was 72% for initially multiple autoantibody–positive, 13% for single autoantibody–positive, and 0% for initially autoantibody-negative nonidentical twins. Full siblings had a 3-year type 1 diabetes risk of 47% for multiple autoantibody–positive, 12% for single autoantibody–positive, and 0.5% for initially autoantibody-negative subjects. CONCLUSIONS Risk of type 1 diabetes at 3 years is high for initially multiple and single autoantibody–positive identical twins and multiple autoantibody–positive nonidentical twins. Genetic predisposition, age, and male sex are significant risk factors for development of positive autoantibodies in twins.
    Type of Medium: Online Resource
    ISSN: 0149-5992 , 1935-5548
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2019
    detail.hit.zdb_id: 1490520-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Diabetes Care, American Diabetes Association, Vol. 45, No. 7 ( 2022-07-07), p. 1512-1521
    Abstract: Differences in type 2 diabetes phenotype by age are described, but it is not known whether these differences are seen in a more uniformly defined adult population at a common early stage of care. We sought to characterize age-related clinical and metabolic characteristics of adults with type 2 diabetes on metformin monotherapy, prior to treatment intensification. RESEARCH DESIGN AND METHODS In the Glycemia Reduction Approaches in Diabetes: A Comparative Effectiveness Study (GRADE), participants were enrolled who had type 2 diabetes duration & lt;10 years, had HbA1c 6.8–8.5%, and were on metformin monotherapy. Participants were randomly assigned to one of four additional glucose-lowering medications. We compared baseline clinical and metabolic characteristics across age categories ( & lt;45, 45 to & lt;55, 55 to & lt;65, and ≥65 years) using ANOVA and Pearson χ2 tests. RESULTS Within the GRADE cohort (n = 5,047), we observed significant differences by age, with younger adults having greater racial diversity, fewer medications for common comorbidities, lower prevalence of CVD, higher weight and BMI, and more pronounced hyperglycemia and diabetic dyslipidemia and with metabolic profile indicating lower insulin sensitivity (inverse fasting insulin [1/(fasting insulin)], HOMA of steady-state insulin sensitivity, Matsuda index) and inadequate β-cell response (oral disposition index) (P & lt; 0.05 across age categories). CONCLUSIONS Clinical and metabolic characteristics of type 2 diabetes differ by age within the GRADE cohort. Younger adults exhibit more prominent obesity-related characteristics, including higher obesity levels and lower insulin sensitivity and β-cell compensation. Given the increasing burden of type 2 diabetes and complications, particularly among younger populations, these age-related distinctions may inform risk factor management approaches and treatment priorities. Further study will determine whether age-related differences impact response to therapy.
    Type of Medium: Online Resource
    ISSN: 0149-5992
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2022
    detail.hit.zdb_id: 1490520-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Diabetes Care, American Diabetes Association, Vol. 44, No. 5 ( 2021-05-01), p. 1219-1227
    Abstract: In observational data, lower levels of lipoprotein(a) have been associated with greater prevalence of type 2 diabetes. Whether pharmacologic lowering of lipoprotein(a) influences incident type 2 diabetes is unknown. We determined the relationship of lipoprotein(a) concentration with incident type 2 diabetes and effects of treatment with alirocumab, a PCSK9 inhibitor. RESEARCH DESIGN AND METHODS In the ODYSSEY OUTCOMES trial alirocumab was compared with placebo in patients with acute coronary syndrome. Incident diabetes was determined from laboratory, medication, and adverse event data. RESULTS Among 13,480 patients without diabetes at baseline, 1,324 developed type 2 diabetes over a median 2.7 years. Median baseline lipoprotein(a) was 21.9 mg/dL. With placebo, 10 mg/dL lower baseline lipoprotein(a) was associated with hazard ratio 1.04 (95% CI 1.02−1.06, P & lt; 0.001) for incident type 2 diabetes. Alirocumab reduced lipoprotein(a) by a median 23.2% with greater absolute reductions from higher baseline levels and no overall effect on incident type 2 diabetes (hazard ratio 0.95, 95% CI 0.85–1.05). At low baseline lipoprotein(a) levels, alirocumab tended to reduce incident type 2 diabetes, while at high baseline lipoprotein(a) alirocumab tended to increase incident type 2 diabetes compared with placebo (treatment–baseline lipoprotein(a) interaction P = 0.006). In the alirocumab group, a 10 mg/dL decrease in lipoprotein(a) from baseline was associated with hazard ratio 1.07 (95% CI 1.03−1.12; P = 0.0002) for incident type 2 diabetes. CONCLUSIONS In patients with acute coronary syndrome, baseline lipoprotein(a) concentration associated inversely with incident type 2 diabetes. Alirocumab had neutral overall effect on incident type 2 diabetes. However, treatment-related reductions in lipoprotein(a), more pronounced from high baseline levels, were associated with increased risk of incident type 2 diabetes. Whether these findings pertain to other therapies that reduce lipoprotein(a) is undetermined.
    Type of Medium: Online Resource
    ISSN: 0149-5992 , 1935-5548
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2021
    detail.hit.zdb_id: 1490520-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Diabetes Care, American Diabetes Association, ( 2023-09-26)
    Abstract: To describe rescue insulin use and associated factors in the Glycemia Reduction Approaches in Type 2 Diabetes: A Comparative Effectiveness Study (GRADE). RESEARCH DESIGN AND METHODS GRADE participants (type 2 diabetes duration & lt;10 years, baseline A1C 6.8%–8.5% on metformin monotherapy, N = 5,047) were randomly assigned to insulin glargine U-100, glimepiride, liraglutide, or sitagliptin and followed quarterly for a mean of 5 years. Rescue insulin (glargine or aspart) was to be started within 6 weeks of A1C & gt;7.5%, confirmed. Reasons for delaying rescue insulin were reported by staff-completed survey. RESULTS Nearly one-half of GRADE participants (N = 2,387 [47.3%]) met the threshold for rescue insulin. Among participants assigned to glimepiride, liraglutide, or sitagliptin, rescue glargine was added by 69% (39% within 6 weeks). Rescue aspart was added by 44% of glargine-assigned participants (19% within 6 weeks) and by 30% of non-glargine-assigned participants (14% within 6 weeks). Higher A1C values were associated with adding rescue insulin. Intention to change health behaviors (diet/lifestyle, adherence to current treatment) and not wanting to take insulin were among the most common reasons reported for not adding rescue insulin within 6 weeks. CONCLUSIONS Proportionately, rescue glargine, when required, was more often used than rescue aspart, and higher A1C values were associated with greater rescue insulin use. Wanting to use non-insulin strategies to improve glycemia was commonly reported, although multiple factors likely contributed to not using rescue insulin. These findings highlight the persistent challenge of intensifying type 2 diabetes treatment with insulin, even in a clinical trial.
    Type of Medium: Online Resource
    ISSN: 0149-5992 , 1935-5548
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2023
    detail.hit.zdb_id: 1490520-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages