Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (5)
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2020
    In:  Journal of Climate Vol. 33, No. 2 ( 2020-01-15), p. 707-726
    In: Journal of Climate, American Meteorological Society, Vol. 33, No. 2 ( 2020-01-15), p. 707-726
    Abstract: Climate variability is investigated by identifying the energy sources and sinks in an idealized, coupled, ocean–atmosphere model, tuned to mimic the North Atlantic region. The spectral energy budget is calculated in the frequency domain to determine the processes that either deposit energy into or extract energy from each fluid, over time scales from one day up to 100 years. Nonlinear advection of kinetic energy is found to be the dominant source of low-frequency variability in both the ocean and the atmosphere, albeit in differing layers in each fluid. To understand the spatial patterns of the spectral energy budget, spatial maps of certain terms in the spectral energy budget are plotted, averaged over various frequency bands. These maps reveal three dynamically distinct regions: along the western boundary, the western boundary current separation, and the remainder of the domain. The western boundary current separation is found to be a preferred region to energize oceanic variability across a broad range of time scales (from monthly to decadal), while the western boundary itself acts as the dominant sink of energy in the domain at time scales longer than 50 days. This study paves the way for future work, using the same spectral methods, to address the question of forced versus intrinsic variability in a coupled climate system.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2015
    In:  Journal of Physical Oceanography Vol. 45, No. 3 ( 2015-03), p. 884-903
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 45, No. 3 ( 2015-03), p. 884-903
    Abstract: The mechanisms that initiate and maintain oceanic “storm tracks” (regions of anomalously high eddy kinetic energy) are studied in a wind-driven, isopycnal, primitive equation model with idealized bottom topography. Storm tracks are found downstream of the topography in regions strongly influenced by a large-scale stationary meander that is generated by the interaction between the background mean flow and the topography. In oceanic storm tracks the length scale of the stationary meander differs from that of the transient eddies, a point of distinction from the atmospheric storm tracks. When the zonal length and height of the topography are varied, the storm-track intensity is largely unchanged and the downstream storm-track length varies only weakly. The dynamics of the storm track in this idealized configuration are investigated using a wave activity flux (related to the Eliassen–Palm flux and eddy energy budgets). It is found that vertical fluxes of wave activity (which correspond to eddy growth by baroclinic conversion) are localized to the region influenced by the standing meander. Farther downstream, organized horizontal wave activity fluxes (which indicate eddy energy fluxes) are found. A mechanism for the development of oceanic storm tracks is proposed: the standing meander initiates localized conversion of energy from the mean field to the eddy field, while the storm track develops downstream of the initial baroclinic growth through the ageostrophic flux of Montgomery potential. Finally, the implications of this analysis for the parameterization and prediction of storm tracks in ocean models are discussed.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2015
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2016
    In:  Journal of Physical Oceanography Vol. 46, No. 4 ( 2016-04), p. 1117-1136
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 46, No. 4 ( 2016-04), p. 1117-1136
    Abstract: In this study an idealized gyre is put into a temporally periodic state by a steady wind stress curl forcing, and its nonlinear response to variable forcing is investigated by a detailed parameter survey varying the time-mean component of the wind and the amplitude and frequency of a periodic component. Periodic wind variations exceeding ~0.5% profoundly affect the western boundary current (WBC) time dependence, yielding regime diagrams with intricately interleaved regions of phase locking, quasiperiodicity, and chaos. In phase-locked states, the WBC period is locked to a rational multiple of the forcing period and can be shifted far outside its natural range. Quasiperiodic states can exhibit long intervals of near-synchrony interrupted periodically by brief slips out of phase with the forcing. Hysteresis and a period-doubling route to chaos are also found. The nonlinear WBC response can include variability at long time scales that are absent from both the forcing and the steadily driven current; this is a new mechanism for the generation of low-frequency WBC variability. These behaviors and their parameter dependence resemble the Devil’s staircase found in the “circle map” model of a periodically forced nonlinear oscillator, but with differences attributable to higher-dimensional dynamics. These nonlinear effects occur with forcing amplitudes in the observed range of the annual wind stress curl cycle and therefore should be considered when inferring the cause of observed WBC time scales. These results suggest that studies omitting either forcing variation or nonlinearity provide an unrealistically narrow view of the possible origins of time dependence in WBCs.
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2016
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 100, No. 12 ( 2019-12), p. ES389-ES413
    Abstract: Instrumental meteorological measurements from periods prior to the start of national weather services are designated “early instrumental data.” They have played an important role in climate research as they allow daily to decadal variability and changes of temperature, pressure, and precipitation, including extremes, to be addressed. Early instrumental data can also help place twenty-first century climatic changes into a historical context such as defining preindustrial climate and its variability. Until recently, the focus was on long, high-quality series, while the large number of shorter series (which together also cover long periods) received little to no attention. The shift in climate and climate impact research from mean climate characteristics toward weather variability and extremes, as well as the success of historical reanalyses that make use of short series, generates a need for locating and exploring further early instrumental measurements. However, information on early instrumental series has never been electronically compiled on a global scale. Here we attempt a worldwide compilation of metadata on early instrumental meteorological records prior to 1850 (1890 for Africa and the Arctic). Our global inventory comprises information on several thousand records, about half of which have not yet been digitized (not even as monthly means), and only approximately 20% of which have made it to global repositories. The inventory will help to prioritize data rescue efforts and can be used to analyze the potential feasibility of historical weather data products. The inventory will be maintained as a living document and is a first, critical, step toward the systematic rescue and reevaluation of these highly valuable early records. Additions to the inventory are welcome.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2019
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 101, No. 1 ( 2020-01), p. 43-47
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages