Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: American Journal of Physiology-Endocrinology and Metabolism, American Physiological Society, Vol. 320, No. 1 ( 2021-01-01), p. E19-E29
    Abstract: Estetrol (E4), a natural estrogen synthesized by the human fetal liver, is currently evaluated in phase III clinical studies as a new menopause hormone therapy. Indeed, E4 significantly improves vasomotor and genito-urinary menopausal symptoms and prevents bone demineralization. Compared with other estrogens, E4 was found to have limited effects on coagulation factors in the liver of women allowing to expect less thrombotic events. To fully delineate its clinical potential, the aim of this study was to assess the effect of E4 on metabolic disorders. Here, we studied the pathophysiological consequences of a Western diet (42% kcal fat, 0.2% cholesterol) in ovariectomized female mice under chronic E4 treatment. We showed that E4 reduces body weight gain and improves glucose tolerance in both C57Bl/6 and LDLR −/− mice. To evaluate the role of hepatic estrogen receptor (ER) α in the preventive effect of E4 against obesity and associated disorders such as atherosclerosis and steatosis, mice harboring a hepatocyte-specific ERα deletion (LERKO) were crossed with LDLR −/− mice. Our results demonstrated that, whereas liver ERα is dispensable for the E4 beneficial actions on obesity and atheroma, it is necessary to prevent steatosis in mice. Overall, these findings suggest that E4 could prevent metabolic, hepatic, and vascular disorders occurring at menopause, extending the potential medical interest of this natural estrogen as a new hormonal treatment. NEW & NOTEWORTHY Estetrol prevents obesity, steatosis, and atherosclerosis in mice fed a Western diet. Hepatic ERα is necessary for the prevention of steatosis, but not of obesity and atherosclerosis.
    Type of Medium: Online Resource
    ISSN: 0193-1849 , 1522-1555
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2021
    detail.hit.zdb_id: 1477331-4
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: American Journal of Physiology-Heart and Circulatory Physiology, American Physiological Society, Vol. 311, No. 1 ( 2016-07-01), p. H96-H106
    Abstract: Excessive cardiac interstitial fibrosis impairs normal cardiac function. We have shown that the α11β1 (α11) integrin mediates fibrotic responses to glycated collagen in rat myocardium by a pathway involving transforming growth factor-β. Little is known of the role of the α11 integrin in the developing mammalian heart. Therefore, we examined the impact of deletion of the α11 integrin in wild-type mice and in mice treated with streptozotocin (STZ) to elucidate the role of the α11 integrin in normal cardiac homeostasis and in the pathogenesis of diabetes-related fibrosis. As anticipated, cardiac fibrosis was reduced in α11 integrin knockout mice (α11 −/− ; C57BL/6 background) treated with STZ compared with STZ-treated wild-type mice ( P 〈 0.05). Unexpectedly, diastolic function was impaired in both vehicle and STZ-treated α11 −/− mice, as shown by the decreased minimum rate of pressure change and prolonged time constant of relaxation in association with increased end-diastolic pressure (all P 〈 0.05 compared with wild-type mice). Accordingly, we examined the phenotype of untreated α11 −/− mice, which demonstrated a reduced cardiomyocyte cross-sectional cell area and myofibril thickness (all P 〈 0.05 compared with wild-type mice) and impaired myofibril arrangement. Immunostaining for desmin and connexin 43 showed abnormal intermediate filament organization at intercalated disks and impaired gap-junction development. Overall, deletion of the α11 integrin attenuates cardiac fibrosis in the mammalian mouse heart and reduces ECM formation as a result of diabetes. Furthermore, α11 integrin deletion impairs cardiac function and alters cardiomyocyte morphology. These findings shed further light on the poorly understood interaction between the fibroblast–cardiomyocyte and the ECM.
    Type of Medium: Online Resource
    ISSN: 0363-6135 , 1522-1539
    RVK:
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2016
    detail.hit.zdb_id: 1477308-9
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages