Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Physiological Society  (2)
Type of Medium
Publisher
  • American Physiological Society  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    American Physiological Society ; 2011
    In:  American Journal of Physiology-Lung Cellular and Molecular Physiology Vol. 301, No. 1 ( 2011-07), p. L40-L49
    In: American Journal of Physiology-Lung Cellular and Molecular Physiology, American Physiological Society, Vol. 301, No. 1 ( 2011-07), p. L40-L49
    Abstract: Alveolar barrier function depends critically on the claudin family tight junction proteins. Of the major claudins expressed by alveolar epithelial cells, claudin (Cldn)-3 and Cldn-4 are the most closely related by amino acid homology, yet they differ dramatically in the pattern of expression. Previously published reports have shown that Cldn-3 is predominantly expressed by type II alveolar epithelial cells; Cldn-4 is expressed throughout the alveolar epithelium and is specifically upregulated in response to acute lung injury. Using primary rat alveolar epithelial cells transduced with yellow fluorescent protein-tagged claudin constructs, we have identified roles for Cldn-3 and Cldn-4 in alveolar epithelial barrier function. Surprisingly, increasing expression of Cldn-3 decreased alveolar epithelial barrier function, as assessed by transepithelial resistance and dye flux measurements. Conversely, increasing Cldn-4 expression improved alveolar epithelial transepithelial resistance compared with control cells. Other alveolar epithelial tight junction proteins were largely unaffected by increased expression of Cldn-3 and Cldn-4. Taken together, these results demonstrate that, in the context of the alveolar epithelium, Cldn-3 and Cldn-4 have different effects on paracellular permeability, despite significant homology in their extracellular loop domains.
    Type of Medium: Online Resource
    ISSN: 1040-0605 , 1522-1504
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2011
    detail.hit.zdb_id: 1477300-4
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Physiological Society ; 1998
    In:  American Journal of Physiology-Lung Cellular and Molecular Physiology Vol. 274, No. 6 ( 1998-06-01), p. L914-L921
    In: American Journal of Physiology-Lung Cellular and Molecular Physiology, American Physiological Society, Vol. 274, No. 6 ( 1998-06-01), p. L914-L921
    Abstract: Respiratory distress syndrome is characterized by fibrin deposition in the lung. Fibrin adversely affects surfactant function and stimulates proliferation of fibroblasts. There is evidence that these properties may be important to the development of bronchopulmonary dysplasia. Despite successful initial treatment of neonatal respiratory distress syndrome with surfactant, the incidence of bronchopulmonary dysplasia has not decreased. In previous studies, it has been demonstrated that rat fetal distal lung epithelium (FDLE) possesses both procoagulant and anticoagulant properties. In this report, we have demonstrated (using factor VII-deficient plasma) that tissue factor is expressed on the FDLE surface and promotes thrombin generation. To regulate thrombin within this procoagulant environment, we have developed a novel anticoagulant, antithrombin-heparin covalent complex (ATH) that can be retained within the lung after intrapulmonary instillation. We have demonstrated that ATH was superior to antithrombin plus standard heparin in suppressing thrombin generation ( P 〈 0.001) and prothrombin consumption ( P 〈 0.01) in recalcified defibrinated plasma on the surface of FDLE. Further studies with ATH in vivo need to be performed.
    Type of Medium: Online Resource
    ISSN: 1040-0605 , 1522-1504
    Language: English
    Publisher: American Physiological Society
    Publication Date: 1998
    detail.hit.zdb_id: 1477300-4
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages