Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Cell Biology (ASCB)  (2)
  • 1
    Online Resource
    Online Resource
    American Society for Cell Biology (ASCB) ; 1998
    In:  Molecular Biology of the Cell Vol. 9, No. 4 ( 1998-04), p. 715-731
    In: Molecular Biology of the Cell, American Society for Cell Biology (ASCB), Vol. 9, No. 4 ( 1998-04), p. 715-731
    Abstract: The β1-integrin cytoplasmic domain consists of a membrane proximal subdomain common to the four known isoforms (“common” region) and a distal subdomain specific for each isoform (“variable” region). To investigate in detail the role of these subdomains in integrin-dependent cellular functions, we used β1A and β1B isoforms as well as four mutants lacking the entire cytoplasmic domain (β1TR), the variable region (β1COM), or the common region (β1ΔCOM-B and β1ΔCOM-A). By expressing these constructs in Chinese hamster ovary and β1 integrin-deficient GD25 cells (Wennerberg et al., J Cell Biol132, 227–238, 1996), we show that β1B, β1COM, β1ΔCOM-B, and β1ΔCOM-A molecules are unable to support efficient cell adhesion to matrix proteins. On exposure to Mn ++ ions, however, β1B, but none of the mutants, can mediate cell adhesion, indicating specific functional properties of this isoform. Analysis of adhesive functions of transfected cells shows that β1B interferes in a dominant negative manner with β1A and β3/β5 integrins in cell spreading, focal adhesion formation, focal adhesion kinase tyrosine phosphorylation, and fibronectin matrix assembly. None of the β1 mutants tested shows this property, indicating that the dominant negative effect depends on the specific combination of common and B subdomains, rather than from the absence of the A subdomain in the β1B isoform.
    Type of Medium: Online Resource
    ISSN: 1059-1524 , 1939-4586
    Language: English
    Publisher: American Society for Cell Biology (ASCB)
    Publication Date: 1998
    detail.hit.zdb_id: 1474922-1
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Molecular Biology of the Cell, American Society for Cell Biology (ASCB), Vol. 17, No. 12 ( 2006-12), p. 5198-5210
    Abstract: Staphylococcus aureus fibronectin binding protein-A (FnBPA) stimulates α5β1-integrin signaling and actin rearrangements in host cells. This eventually leads to invasion of the staphylococci and their targeting to lysosomes. Using live cell imaging, we found that FnBPA-expressing staphylococci induce formation of fibrillar adhesion-like attachment sites and translocate together with them on the surface of human endothelial cells (velocity ∼50 μm/h). The translocating bacteria recruited cellular actin and Rab5 in a cyclic and alternating manner, suggesting unsuccessful attempts of phagocytosis by the endothelial cells. Translocation, actin recruitment, and eventual invasion of the staphylococci was regulated by the fibrillar adhesion protein tensin. The staphylococci also regularly produced Neural Wiskott-Aldrich syndrome protein-controlled actin comet tails that further propelled them on the cell surface (velocity up to 1000 μm/h). Thus, S. aureus FnBPA produces attachment sites that promote bacterial movements but subvert actin- and Rab5 reorganization during invasion. This may constitute a novel strategy of S. aureus to postpone invasion until its toxins become effective.
    Type of Medium: Online Resource
    ISSN: 1059-1524 , 1939-4586
    Language: English
    Publisher: American Society for Cell Biology (ASCB)
    Publication Date: 2006
    detail.hit.zdb_id: 1474922-1
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages