Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society of Hematology  (11)
  • 1
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 6594-6595
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 137, No. 24 ( 2021-06-17), p. 3454-3459
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 133, No. 21 ( 2019-05-23), p. 2279-2290
    Abstract: Programmed death-ligand 1 (PD-L1) expression on malignant cells is a dominant immune escape mechanism across a variety of human cancers. A unique genetic mechanism underlying PD-L1 upregulation has been uncovered in classical Hodgkin lymphoma (cHL), in which copy gains of the chromosomal region (9p24.1) containing the programmed death-1 (PD-1) ligands PD-L1 and PD-L2 are recurrently observed. While chromosome 9p24.1 copy-number alterations are ubiquitous in cHL, they also occur in diffuse large B-cell lymphoma (DLBCL), albeit with a lower incidence. Here, fluorescence in situ hybridization was used to identify DLBCLs harboring PD-L1 gene alterations, thereby enabling a characterization of the immunogenomic landscape of these lymphomas. Among 105 DLBCL cases analyzed, PD-L1 alterations were identified in 27%. PD-L1 alterations were highly enriched among non–germinal center DLBCLs and exhibited robust PD-L1 protein expression. These lymphomas were heavily infiltrated by clonally restricted T cells and frequently downregulated human leukocyte antigen expression. RNA sequencing of PD-L1–altered DLBCLs revealed upregulation of genes involved in negative T-cell regulation and NF-κB pathway activation, while whole-exome sequencing identified frequent mutations in genes involved in antigen presentation and T-cell costimulation. Many of these findings were validated in a large external data set. Interestingly, DLBCL patients with PD-L1 alterations had inferior progression-free survival following front-line chemoimmunotherapy; however, in the relapsed/refractory setting, PD-L1 alterations were associated with response to anti-PD-1 therapy. Collectively, our results indicate that PD-L1 alterations identify a unique biological subset of DLBCL in which an endogenous antilymphoma immune response has been activated, and that is associated with responsiveness to PD-1 blockade therapy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 924-924
    Abstract: Background: Effective treatment of relapsed/refractory (r/r) DLBCL remains a major unmet need. Checkpoint blockade therapy (CBT) leads to durable responses in a small subset of r/r DLBCL patients, but limited understanding of predictive biomarkers and characteristics of host immune responses have slowed development of DLBCL immunotherapy. We previously described a subset of "T-cell inflamed" DLBCLs marked by PD-L1 gene alterations and increased likelihood of response to CBT. In this study, we aimed to identify and group gene expression patterns associated with immune features in a large number of DLBCL cases available in published datasets. We investigate the immunogenomic features of each group and corroborate findings in primary DLBCLs. Methods: Gene sets reflecting a broad array of activation states or subtypes of tumor-infiltrating immune cells were selected from previous studies (n = 143). Expression by case was scored for each set by applying gene set variation analysis (GSVA) to previously published DLBCL bulk RNAseq profiles (n = 1189). The resulting score matrix was reduced with principal component analysis (PCA); the first 10 components were used to hierarchically cluster each case into related groups. Immune cell fractions were estimated from RNAseq counts via deconvolution analysis. Differentially expressed genes (DEG) for each cluster were identified by false discovery rate (FDR) & lt; 0.05 and log2 fold change of & gt; 1.5. The cytolytic gene expression (CYT) score, associated with T-cell immunity against solid tumors, was computed for each case. Protein-coding mutations found in ≥ 5% of cases by whole exome sequencing analysis were filtered for driver mutations (MutSig2CV q-value & lt; 0.1). PD-L1 gene amplification status was determined where copy number array data were available (n = 471). RNAseq (Illumina HiSeq 2000 platform) was performed on 24 fixed and embedded treatment-naive DLBCL tumors from an institutional biorepository. GSVA scores were projected onto the PCA and clusters assigned. CD4+ and CD8+ T-cells per high-power field (HPF) were assessed by immunohistochemistry (IHC). Results: Four clusters of immune gene set expression were identified in existing DLBCL datasets, termed "inflamed", "intermediate-M", "intermediate-T" and "cold". There is no association of any cluster with a difference in overall survival or enrichment in a cell of origin subtype. The inflamed cluster has the highest mean CYT score (Fig 1A, p & lt; 0.001) and highest deconvolution-estimated fraction of CD8+ T-cells, M1 and M2 macrophages, dendritic cells, T-helper 1, and T-helper 2 cells (Fig 1C-E, p & lt; 0.001). Significantly upregulated DEGs include CXCL9, CXCL10, CCL8, and CXCR6, which have been associated with a T-cell inflamed phenotype in solid tumors. Immune escape mechanisms in the inflamed cluster are suggested by upregulated DEGs of VSIG4 and IDO1, and significant enrichment for PD-L1 gene amplifications compared to the cold cluster (Fig 1B, 8.6% vs 1%, p = 0.01). The cold cluster has the lowest mean CYT score (p & lt; 0.001), and lowest deconvolution scores for CD8+ T-cells, M1 and M2 macrophages, and dendritic cells (p & lt; 0.001). The cold cluster harbors more mutations in MYD88 (27%),TMSB4X (11.6%), and FOXO1 (8%) and fewer SOCS1 (7%) mutations than other clusters (FDR & lt; 0.25). Intermediate-T and intermediate-M clusters share mid-range values of estimated CD8+ T cells and CYT scores, but intermediate-M contained more frequent PD-L1 amplifications (Fig 1B, 9% vs 0.9%, p = 0.02), lower estimated Th1 fraction (p & lt; 0.001), and higher estimated total macrophages (p & lt; 0.001) than intermediate-T. Representatives of each cluster were identified in primary DLBCL tumors (n = 24). Mean CD4+ T-cell count per HPF was higher in inflamed cluster DLBCLs compared to cold (45.1 vs 10.1, p = 0.032). A non-significant increase in CD8+ cells was also seen (21.3 vs 14.2 per HPF). Conclusion: In this first comprehensive immunogenomic study of DLBCL, we define differences in host immune response by gene set expression, associate oncogenic mutations with immune exclusion, and discover expression of a number of immune escape genes in inflamed cases. Primary samples analyzed to date support the immune response patterns found by computational analysis. A greater understanding of heterogeneity in host response to DLBCL may help identify subsets of DLBCLs with inherent vulnerability to CBT and other immunotherapies. Disclosures Smith: Portola Pharmaceuticals: Research Funding. Kline:Merck: Honoraria; Merck: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 3415-3415
    Abstract: Background: Disease relapse remains the primary cause of mortality following allogeneic hematopoietic cell transplantation (alloHCT). One important mechanism of disease relapse in this setting is failure of the graft-versus-tumor (GvT) effect, and the PD-1/PD-L1 axis may diminish GvT after alloSCT. We hypothesized that PD-1/PD-L1 interactions prevent donor-derived T cells from eliminating malignant cells expressing minor histocompatibility antigens, and that blocking PD-1/PD-L1 interactions with the anti-PD-1 antibody, pembrolizumab (pem), might restore GvT and induce clinical responses in patients (pts) with relapsed hematologic malignancies following alloHCT. However, PD-1 blockade therapy has been associated with severe graft-versus-host disease (GVHD) in murine models, and GVHD has been reported in humans treated with anti-PD-1 therapy after alloHCT. Thus, we developed a prospective clinical study to test the tolerability and preliminary efficacy of pembrolizumab in patients with relapsed leukemia/lymphoma after alloSCT. Methods: Pts with AML, MDS, or B cell lymphomas with biopsy-proven recurrence after alloSCT were eligible, as long as no active acute GVHD 〉 grade 1 or chronic GVHD was present. Pts were treated with pem 200 mg IV q3 weeks for up to 2 years, provided that neither intolerable side-effects nor disease progression occurred. Pem could be delayed for treatment-limiting toxicities (TLT), defined as immune-related adverse events (irAEs) not meeting criteria for a dose-limiting toxicity (DLT). DLT was defined as the development of grade 3 or 4 acute GVHD/irAE, any unexpected grade 〉 2 toxicity related to pem, or development of 〉 grade 2 vital organ dysfunction secondary to an irAE within 90 days of pem initiation. A two-stage mini-max design was chosen, with an early stopping rule for DLT after the first 11 patients were enrolled. Results: 11 pts (7 male, 4 female), mean age 49.5 yrs (range, 27-62 yrs) have been enrolled. 8 pts had AML and 3 had lymphoma (DLBCL - 2, cHL - 1). 6 pts had matched-related donors (MRD) and 5 pts had haploidentical/umbilical cord blood (haplo-cord) donors. Pts with MRD were conditioned with fludarabine, melphalan, and alemtuzumab, or fludarabine and busulfan. Pts with haplo-cord donors were conditioned with fludarabine, melphalan, and ATG. 5 pts had prior acute GVHD. Pts relapsed following alloHCT at a median of 453 days (range, 101-1021 days). A median of 2 cycles of pembrolizumab (range, 1-8) was administered. 3 pts are receiving ongoing treatment. 3 pts experienced a DLT due to an irAE (grade 3-4 pneumonitis 2 pts; grade 3 hyperthyroidism 1 pt), all of which occurred after 1-2 cycles of pem, and resolved after pem discontinuation and corticosteroid treatment. 1 pt experienced a TLT (grade 2 rash), but resumed pem treatment. Among all pts, irAEs of any grade occurred in 7 pts. 7 pts were evaluable for response. 3 pts (2 AML, 1 DLBCL) experienced progressive disease (PD), 2 pts (AML) had stable disease (SD), and 2 pts achieved CR (DLBCL, cHL). 1 pt with AML (myeloid sarcoma) in whom pem was discontinued for PD by PET/CT imaging had a concurrent tumor biopsy that revealed marked T cell infiltration and PD-L1 expression on a significant fraction of malignant myeloid cells, suggestive of possible inflammatory "pseudo-progression". 1 pt in CR developed therapy-related AML unrelated to pem. Notably, both patients with CR following pem had PD-L1 gene-amplified lymphomas by FISH, and diffuse PD-L1 protein expression on pre-treatment biopsies. Currently, 4 pts have died, all due to disease progression, and 7 are alive. A total of 26 patients are expected to be enrolled. Conclusions: Treatment with pem in the post-alloHCT disease relapse setting is feasible, but can induce early and severe irAEs, requiring vigilant monitoring. To date, objective responses were seen in 2/3 lymphoma patients treated with pem. In AML, pem may be less effective, where a best response of SD was observed in 2 pts, and possible "pseudo-progression" in a patient with myeloid sarcoma. This study continues to accrue pts, and correlative analyses are underway. To our knowledge, these are the first prospective data of PD-1 blockade therapy in the post-alloHCT setting. Disclosures Kline: iTeos: Research Funding; Merck: Honoraria, Research Funding. Liu:BMS: Research Funding. Curran:Merck: Research Funding. Stock:Jazz Pharmaceuticals: Consultancy. Smith:BMS: Consultancy; Portola: Honoraria. Bishop:Juneau Therapeutics: Speakers Bureau; Celgene: Honoraria, Speakers Bureau; Seattle Genetics: Consultancy, Membership on an entity's Board of Directors or advisory committees; United Healthcare: Employment; Novartis Pharmaceuticals Corporation: Speakers Bureau.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood Advances, American Society of Hematology, Vol. 7, No. 6 ( 2023-03-28), p. 963-970
    Abstract: A failed graft-versus-tumor (GVT) effect is a common mechanism of relapse after allogeneic hematopoietic cell transplantation (alloHCT). Although targeting the PD-1/PD-L1 axis may restore GVT effects, PD-1 blockade exacerbates graft-versus-host disease (GVHD) in murine models, and severe GVHD can occur in patients treated with anti-PD-1 therapy after alloHCT. Therefore, we developed a prospective study to assess the safety and efficacy of pembrolizumab in patients relapsing after alloHCT. Eligible patients received pembrolizumab (200 mg every 3 weeks) for up to 2 years. Twelve patients were enrolled (8 patients with acute myeloid leukemia, 1 patient with myelodysplastic syndrome, 1 patient with classical Hodgkin lymphoma, and 2 patients with diffuse large B-cell lymphoma [DLBCL]). All participants received reduced-intensity preparative regimens with in vivo T-cell depletion. The median time from alloHCT to enrollment was 587 days (range, 101-4211). Three participants (25%) experienced grade 3 to 4 immune-related adverse events (irAE) (pneumonitis, 2 patients; hyperthyroidism, 1 patient), all occurring after 1 to 2 cycles, and resolving after pembrolizumab discontinuation and corticosteroid treatment. irAEs of any grade occurred in 5 patients (42%). No treatment-emergent GVHD was observed. Overall and complete response (CR) rates were 22% (2/9). Both patients achieving CRs had PD-L1 gene–amplified lymphomas and diffuse PD-L1 expression on pretreatment biopsies. An acquired EZH2 mutation was identified at relapse in a patient with DLBCL who achieved an initial CR to pembrolizumab, which was associated with downregulated HLA expression on malignant B cells, implicating EZH2 mutations as a potential immune escape mechanism after PD-1–blockade therapy. In conclusion, after alloHCT, treatment with pembrolizumab is feasible and associated with objective responses in relapsed lymphoid malignancies but can induce severe irAEs, requiring vigilant monitoring. This trial was registered at www.clinicaltrials.gov as #NCT02981914.
    Type of Medium: Online Resource
    ISSN: 2473-9529 , 2473-9537
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2023
    detail.hit.zdb_id: 2876449-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 673-673
    Abstract: Background: Programmed death - ligand 1 (PD-L1) expression is a dominant immune escape mechanism across human cancers. Ubiquitous copy gains of chromosome 9p24.1 - a region containing the PD-L1 and PD-L2 loci - lead to PD-L1 expression on Hodgkin-Reed-Sternberg cells in classical Hodgkin lymphoma. PD-L1 gene alterations also occur in diffuse large B cell lymphoma (DLBCL), albeit less commonly. Hypothesizing that PD-L1 gene alterations identify DLBCLs in which potent anti-lymphoma immune responses have been activated, we aimed to characterize the immune landscape of PD-L1 gene-altered DLBCLs, describe the key clinical features of these patients, and determine the degree to which PD-L1 gene alterations predict for response to PD-1 blockade therapy in DLBCL. Methods: FISH was performed on 105 formalin-fixed, paraffin-embedded (FFPE) DLBCL specimens with DNA probes to PD-L1, a region centromeric to PD-L2, and centromere 9. Lymphoma-infiltrating T cell numbers (68 cases), HLA class I/II expression (74 cases), and PD-L1 protein expression (93 cases) were assessed by IHC. RNA sequencing (seq) was performed on FFPE samples utilizing the Illumina HiSeq 2000 platform. Differentially-expressed genes were identified between PD-L1-altered and not altered DLBCLs using a false discovery rate (FDR) of 0.05 and log2 fold change of 〉 1.5. Whole exome seq (WES) was performed on DNA from DLBCL specimens and 22 matched blood samples using the Illumina HiSeq exome kit in collaboration with Theragen Etex Bio Institute. Results: PD-L1 gene alterations were identified by FISH in 28/105 samples (27% - 16% relative PD-L1 copy gains, 7% PD-L1 amplifications, 2% PD-L1 translocations, 2% chromosome 9 polysomy), were enriched in non-germinal center (GC) DLBCLs (75% non-GC vs 25% GC; p=0.001), and were associated with robust PD-L1 protein expression (Fig 1A-B). PD-L1 gene-altered DLBCLs were more heavily infiltrated by CD8+ T cells compared to PD-L1 not altered DLBCLs (22.6 vs 13.8 CD8+ T cells/hpf; p 〈 0.05), and TCR-β seq revealed a more clonal TCR repertoire among PD-L1-amplified DLBCLs (Fig 1C). Consistent with heightened T cell surveillance, HLA class I expression was absent or decreased more frequently among DLBCLs with vs without PD-L1 gene alterations (42% vs 20%; p 〈 0.05). Furthermore, RNAseq of 12 PD-L1 gene-altered and 12 not altered DLBCLs (controlled for COO) identified differential expression of ~140 genes (Fig 1D). Gene ontology (GO) terms enriched in PD-L1 gene-amplified DLBCLs (p 〈 0.05) included those related to negative regulation of T cell activation, while ingenuity pathway analysis (IPA) identified that a TH1 response and NF-κB activation were significantly enriched in PD-L1 gene-altered vs not altered DLBCLs (z-score p-value 〈 0.05). Pathway-level up-regulation of NF-κB-associated genes in PD-L1 gene-altered DLBCLs was confirmed by GSEA (NES=1.65; p=0.009). WES performed on the same 24 cases revealed a 2-3-fold increase in somatic mutations in genes involved in antigen presentation (HLA, B2M, CIITA) and T cell co-stimulation (CD70, CD83) in PD-L1 gene-altered vs not altered DLBCLs (p=0.02), consistent with the activation of additional genetic mechanisms of immune escape in these lymphomas. Somatic TP53 and TNFAIP3 (A20) mutations, among others, were enriched in DLBCLs with PD-L1 gene alterations (p 〈 0.05) (Fig 1E). Total tumor mutational burden and predicted neo-antigen numbers were similar in PD-L1 gene-altered and not altered DLBCLs (p=ns), arguing that PD-L1 gene-altered DLBCLs are not inherently more antigenic. Patients with PD-L1 gene-altered DLBCLs had higher-risk clinical features and inferior progression-free survival following initial treatment (Fig 1F). Finally, in the relapsed/refractory setting, PD-L1 gene alterations in an exploratory retrospective analysis were associated with response to PD-1 blockade therapy with pembrolizumab among 29 DLBCL patients enrolled in the KEYNOTE-013 study with tissue available (50% objective responses in PD-L1 gene-altered DLBCLs vs 8% in not altered cases), suggesting that PD-L1 gene alterations may be a useful predictive biomarker of response to anti-PD-1 antibody therapy in DLBCL. Conclusions: Our results indicate that PD-L1 gene alterations identify a unique biological subset of DLBCL in which endogenous anti-lymphoma immune responses have been activated, and which is associated with responsiveness to PD-1 blockade therapy. Disclosures Kline: Merck: Honoraria, Research Funding; iTeos: Research Funding. Orlowski:Merck & Co., Inc.: Employment. Smith:Portola: Honoraria; BMS: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 136, No. Supplement 1 ( 2020-11-5), p. 40-41
    Abstract: Introduction: Classical Hodgkin lymphoma (cHL) is characterized by a robust and complex immune cell infiltrate and the rare presence of malignant Hodgkin-Reed-Sternberg (HRS) cells. At the genetic level, HRS cells recurrently acquire alterations that lead to defective antigen presentation (β2 microglobulin mutations) and mediate T cell dysfunction (PD-L1 copy gains/amplifications) in order to subvert host immune surveillance. The clinical relevance of PD-L1 protein over-expression in cHL is clear, as response rates to PD-1 blockade therapy are extremely high among patients with relapsed/refractory (r/r) disease. Despite its remarkable efficacy, the cells that mediate response to anti-PD-1 therapy in cHL remain undefined. Recent analyses have highlighted a possible role for CD4+ T cells in mediating the clinical activity of anti-PD-1 therapy in cHL. CD4+ T cells significantly outnumber CD8+ T cells in cHL lesions and are more frequently juxtaposed to HRS cells in situ. Furthermore, HLA class II expression on HRS cells predicted higher complete response rates to PD-1 blockade therapy in r/r cHL patients. However, a candidate T cell population capable of specific reactivity to antigens expressed by HRS cells has yet to be identified. This information is critical as such T cells might be functionally reinvigorated to mediate HRS cell elimination following PD-1 blockade therapy. In order to address this key knowledge gap, we analyzed data at single cell (sc) resolution using paired RNA and T cell receptor (TCR) sequencing in 9 diagnostic cHL and 5 reactive lymph node (RLN) specimens. Methods: Sequencing was performed using the 10x Genomics Chromium Single Cell 5' Gene Expression and V(D)J workflows. B-cell depletion of each sample was achieved using CD19 microbeads and negative selection to enrich T cell populations. Reads were analyzed and aligned with CellRanger (v3.1.0) and Seurat (v3.2.0) was used to conduct clustering by a shared nearest neighbor (SNN) graph on scRNA data. TCR sequencing data was integrated using scRepertoire (v1.0.0). Results: A detailed map of the immune cell states in cHL was created using scRNA-seq (10X) data on 79,085 cells from 9 cHL (52,602 cells) and 5 RLN samples (26,484 cells) expressing a total of 21,421 genes (mean 5649 cells/sample; mean 2849 mRNA reads/cell). Dimensionality reduction and unsupervised graph-based clustering revealed 21 distinct cell type and activation state clusters, including T cells, NK cells, macrophages, and dendritic cells (Fig 1A-B). A cluster identifying HRS cells was not observed, consistent with a recently published report. Ten T cell clusters were identified (47,573 cells), including naive- and memory-like T cells, effector/cytotoxic CD8+ T cells, regulatory T cells, and T follicular helper cells. Unexpectedly, a putative exhausted T cell cluster was not clearly observed. The relative contributions of cHL and RLNs cases to these clusters are shown in Fig 1C. Paired TCR sequencing was available for 23,943 cells. Overall TCR diversity was lower among cHL samples compared to RLN specimens (Fig 1D). In cHL samples, modest clonal expansion within regulatory T cell and memory CD4+ T cell clusters was observed, but the most striking clonal expansion occurred among cells assigned to effector/cytotoxic CD8+ T cell clusters - a finding not observed in most RLN specimens (Fig 1E). Clonally-expanded effector/cytotoxic CD8+ T cells displayed high expression of granzymes (GZMA, GZMH, GZMK), cytokines (TNF, IFNG) and chemokines (CCL4/CCL5), and modest expression of exhaustion markers (PDCD1, ENTPD1, HAVCR2, ITGAE), contrasting with data from single-cell analyses of solid tumors. Clonal expansion of effector/cytotoxic CD8+ T cells was particularly robust in EBV-positive cHLs, likely due to recognition of viral-derived epitopes displayed on HRS cells (Fig 1F). Phenotypic and functional validation of key immune cell clusters in cHL specimens using spectral cytometry is underway and will be reported at the meeting. Conclusions: For the first time, our data have unveiled the nature of the T cell repertoire in cHL at single cell resolution. Our results reveal a recurrent pattern of clonal expansion within effector CD8+ cells, which may be the HRS antigen-specific T cells that mediate response to PD-1 blockade. This hypothesis requires confirmation through similar analyses of pre- and on-treatment biopsies of cHL patients receiving anti-PD-1 therapy. Disclosures Godfrey: Gilead: Research Funding; Merck: Research Funding; Verastem: Research Funding. Venkataraman:EUSA Pharma: Speakers Bureau. Smith:Janssen: Consultancy; BMS: Consultancy; TG Therapeutics: Consultancy, Research Funding; Genentech/Roche: Consultancy, Other: Support of parent study and funding of editorial support, Research Funding; Karyopharm: Consultancy, Research Funding; FortySeven: Research Funding; Pharmacyclics: Research Funding; Acerta: Research Funding; Celgene: Consultancy, Research Funding. Kline:Kite/Gilead: Speakers Bureau; Seattle Genetics: Membership on an entity's Board of Directors or advisory committees; Merck: Research Funding; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Verastem: Membership on an entity's Board of Directors or advisory committees, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 138, No. Supplement 1 ( 2021-11-05), p. 449-449
    Abstract: Introduction: Most patients diagnosed with diffuse large B cell lymphoma (DLBCL) are cured with combination chemoimmunotherapy, but 40% will develop relapsed or refractory (r/r) disease, which is often associated with a poor clinical outcome. PD-1 blockade therapy has been investigated in r/r DLBCL; however, response rates in unselected DLBCL patients are disappointing, highlighting the need for deeper understanding of DLBCL immune landscapes, as well as mechanisms that regulate the immune response to checkpoint blockade therapy (CBT) in this disease. In solid cancers, tumor-cell intrinsic oncogenic signaling strongly influences the immune environment and impacts clinical response to CBT. Despite the recent publication of large-scale genomic datasets in DLBCL, the impact of oncogenic signaling on the immune environment remains to be fully elucidated. In this study, we aimed to characterize immune landscapes associated with DLBCL, as well as the role of lymphoma-intrinsic alterations on shaping the immune environment in this disease. Methods: Using gene set variation analysis (GSVA) in a large cohort of primary DLBCLs (n = ~900), a sample-wise enrichment score was generated for gene sets associated with tumor infiltrating lymphocytes. Gene sets were manually curated to include signatures relating to IFNγ response, T helper cell subsets, CD8 + T cell exhaustion, macrophages, and dendritic cells. A DLBCL cell-of-origin (COO) signature was also included in the GSVA to control for the transcriptional and genomic effects of COO. Samples were hierarchically clustered into related groups. Multispectral immunofluorescence (mIF) for canonical T cell markers was used to confirm GSVA clustering. To mechanistically validate our findings, CRISPR/Cas9 gene editing was used to modulate candidate oncogenes and tumor suppressors genes (TSGs) in the syngeneic A20 murine lymphoma model. Results: GSVA performed on transcriptomes from a large genomic DLBCL dataset revealed four distinct DLBCL immune clusters, termed "ABC hot", "ABC cold", "GCB hot" and "GCB cold", defined by differential expression scores of immune related gene sets (Fig 1A). Concordant with our previous work, DLBCLs with PD-L1 gene amplifications, which are associated with a "T-cell inflamed" tumor microenvironment, were enriched in the "ABC hot" cluster (Fig 1B). Conversely, double hit signature DLBCLs, known to be associated with decreased immune cell infiltration and a GCB COO, were enriched in "GCB cold" DLBCLs (Fig 1C). In an internal cohort of diagnostic DLBCL samples (n = 90) for whom RNA sequencing (RNAseq) and FFPE tissue were available, mIF analysis showed that both "ABC hot" and "GCB hot" DLBCLs had significantly higher ratios of CD8 + T cells to lymphoma cells compared to cold DLBCLs. "ABC hot" DLBCLs also had a significantly higher CD4 + T cell to lymphoma cell ratio (Fig 1D). Importantly, several mutations that correlated with particular DLBCL immune clusters were identified. The "ABC cold" cluster was significantly enriched for loss-of-function (LOF) mutations in TMEM30A and MYD88, whereas LOF mutations in ATM and FOXO1 were commonly observed in "GCB cold" DLBCLs. Finally, LOF mutations in SOCS1 and B2M were significantly enriched in "GCB hot" DLBCLs (Fig 1E, 1F). As LOF SOCS1 mutations were strongly associated with "GCB hot" DLBCLs and are also prevalent in other CBT-sensitive lymphomas, we hypothesized that SOCS1 LOF mutations would enhance lymphoma cell vulnerability to CBT due to increased IFNγ sensitivity resulting from unopposed JAK/STAT activation. To test this hypothesis, we generated Socs1 deficient A20 lymphoma cells. Compared to A20 WT, A20 Socs1-/- cells were characterized by increased pStat1 levels upon IFNγ stimulation (Fig 1G). Interestingly, A20 Socs1-/- tumors showed increased sensitivity to α-PD1 therapy compared to A20 WT in syngeneic hosts. Together, these data suggest that tumor-cell intrinsic JAK/STAT activation via SOCS1 -/- increases lymphoma cell sensitivity to IFNγ and α-PD1 therapy (Fig 1H). Conclusion: We have developed a novel immunogenomic platform to define the role of tumor-cell intrinsic alterations on the immune landscape of DLBCL. Confirmatory studies using in vitro and in vivo models validated the effect of key oncogenes and TSGs on the tumor microenvironment, and suggest these candidate genes may impact response to CBT in DLBCL. Figure 1 Figure 1. Disclosures Smith: Alexion, AstraZeneca Rare Disease: Other: Study investigator; Celgene, Genetech, AbbVie: Consultancy. Steidl: Trillium Therapeutics: Research Funding; Curis Inc.: Consultancy; Epizyme: Research Funding; Seattle Genetics: Consultancy; Bayer: Consultancy; AbbVie: Consultancy; Bristol-Myers Squibb: Research Funding. Kline: Seagen: Membership on an entity's Board of Directors or advisory committees; Morphosys: Consultancy, Membership on an entity's Board of Directors or advisory committees; Kite/Gilead: Speakers Bureau; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Merck: Consultancy, Research Funding; Verastem: Research Funding; SecuraBio: Membership on an entity's Board of Directors or advisory committees; Regeneron: Membership on an entity's Board of Directors or advisory committees.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 136, No. Supplement 1 ( 2020-11-5), p. 40-40
    Abstract: Intro: Relapsed/refractory diffuse large B cell lymphoma (r/r DLBCL) is associated with poor outcomes, and remains an area of unmet clinical need. Emerging data indicate that a key macrophage immune checkpoint termed CD47 can be effectively targeted in r/r DLBCL. CD47 is a potent "don't eat me" signal and impairs tumor cell phagocytosis by engaging the inhibitory macrophage receptor, SIRPα. Importantly, early clinical studies demonstrate that blocking CD47-SIRPα interactions with an anti-CD47 antibody (magrolimab) yields promising activity in r/r DLBCL patients, particularly when combined with rituximab, which further potentiates lymphoma cell phagocytosis via its Fc domain. Moving forward, it will be crucial to identify combinatorial strategies that improve the efficacy of anti-CD47 therapy in r/r DLBCL. Tumor-associated macrophages (TAMs) contribute to an immunosuppressive environment in cancer through secretion of cytokines, metabolites, and expression of immune checkpoints. Sustained PI3K-γ signaling is critical to maintain immune suppressive TAM functions, and PI3K-γ inhibition polarizes TAMs into a pro-inflammatory state that culminates in potent anti-tumor T cell responses, sensitizing cancers to PD-1 blockade therapy. We hypothesized that activating TAMs through PI3K-δ/γ inhibition would also augment their inherent phagocytic capacity and synergize with phagocytosis-targeting treatments such as CD47 blockade. Thus, we investigated the impact of the dual PI3K-δ/γ inhibitor, duvelisib, on expression of key phagocytic receptors and pathways in human macrophages, as well as its effect on enhancing lymphoma cell phagocytosis with the anti-CD47 antibody, magrolimab. Results: RNA sequencing of duvelisib-treated human monocyte-derived macrophages revealed that PI3K-δ/γ inhibition induced broad transcriptional changes suggestive of an activated macrophage state (Fig 1A), including upregulation of interferon response genes (IRF9) and costimulatory molecules (CD86), while decreasing expression of immune suppressive cytokines (IL10) and inhibitory ligands (PDL1). Moreover, duvelisib upregulated transcription of canonical pro-phagocytic receptors (LRP1, FCGR2A,CD44), lysosomal degradation components (LYZ, CTSS) and phosphatidylserine-bridging genes (MFG-E8, GAS6), while inhibiting metabolic pathways, most notably mTOR, each of which has been associated with increased and more efficient phagocytosis. Given these findings, we evaluated the effect of dual PI3K-δ/γ inhibition on macrophage phagocytosis of DLBCL cells in the context of CD47 blockade in vitro. Across a broad panel of human DLBCL cell lines and multiple monocyte donors, pre-treatment of macrophages with duvelisib significantly increased lymphoma cell phagocytosis by magrolimab (Fig 1B-C). This effect reflected a direct increase in the phagocytic capacity of treated macrophages, as lymphoma cells were not exposed to duvelisib. In separate experiments, we found that duvelisib rarely induced full apoptosis of DLBCL cells, but did promote the expression of "eat me" signals, such as calreticulin and phosphatidylserine on many of the cell lines examined (Fig 1D). Collectively, these results suggest that PI3K-δ/γ inhibition enhances the inherent phagocytic capacity of macrophages, while also sensitizing lymphoma cells for engulfment. Similarly, potent effects were not observed with PI3K-δ- or PI3K-γ-specific inhibitors, suggesting that combined PI3K-δ/γ inhibition is critical to mediating these beneficial effects. Finally, to determine whether duvelisib impacted the efficacy of magrolimab in vivo, we treated human DLBCL xenografts and observed that while duvelisib had minimal impact on lymphoma growth, the combination of duvelisib and magrolimab induced complete tumor rejection in a high proportion of mice, leading to increased survival compared to mice treated with magrolimab alone (Fig 1E). Conclusion: Collectively, our findings suggest that targeting the PI3K-δ/γ axis favorably induces key macrophage phagocytic pathways, while simultaneously upregulating important "eat me" signals on lymphoma cells. Together, these alterations lower the phagocytic threshold of TAMs and dramatically increase the efficacy of anti-CD47 therapy in DLBCL xenograft models. This work paves the way for early-phase studies of duvelisib and magrolimab in r/r DLBCL and other lymphomas. Disclosures Godfrey: Verastem: Research Funding; Merck: Research Funding; Gilead: Research Funding. Coma:Verastem Oncology, Inc: Current Employment, Current equity holder in publicly-traded company. Maute:Gilead Sciences, Inc.: Current Employment. Chao:Gilead Sciences: Current Employment. Pachter:Verastem Therapeutics: Current Employment. Kline:Kite/Gilead: Speakers Bureau; Merck: Research Funding; Verastem: Membership on an entity's Board of Directors or advisory committees, Research Funding; Karyopharm: Membership on an entity's Board of Directors or advisory committees; Seattle Genetics: Membership on an entity's Board of Directors or advisory committees.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages