Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society of Hematology  (406)
  • 1
    In: Blood, American Society of Hematology, Vol. 126, No. 16 ( 2015-10-15), p. 1940-1948
    Abstract: In the absence of FXIIIa activity, red blood cells are extruded from clots during clot contraction. Factor XIIIa promotes red blood cell retention in contracting clots by crosslinking fibrin α-chains.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 104, No. 1 ( 2004-07-01), p. 128-134
    Abstract: The bleeding diathesis associated with hereditary factor XI (fXI) deficiency is prevalent in Ashkenazi Jews, in whom the disorder appears to be an autosomal recessive condition. The homodimeric structure of fXI implies that the product of a single mutant allele could confer disease in a dominant manner through formation of heterodimers with wild-type polypeptide. We studied 2 unrelated patients with fXI levels less than 20% of normal and family histories indicating dominant disease transmission. Both are heterozygous for single amino acid substitutions in the fXI catalytic domain (Gly400Val and Trp569Ser). Neither mutant is secreted by transfected fibroblasts. In cotransfection experiments with a wild-type fXI construct, constructs with mutations common in Ashkenazi Jews (Glu117Stop and Phe283Leu) and a variant with a severe defect in dimer formation (fXI-Gly350Glu) have little effect on wild-type fXI secretion. In contrast, cotransfection with fXI-Gly400Val or fXI-Trp569Ser reduces wild-type secretion about 50%, consistent with a dominant negative effect. Immunoprecipitation of cell lysates confirmed that fXI-Gly400Val forms intracellular dimers. The data support a model in which nonsecretable mutant fXI polypeptides trap wild-type polypeptides within cells through heterodimer formation, resulting in lower plasma fXI levels than in heterozygotes for mutations that cause autosomal recessive fXI deficiency.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2004
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 136, No. Supplement 1 ( 2020-11-5), p. 29-30
    Abstract: The first three authors contributed equally. The last three authors share senior authorship. Background: Although there has been an increased recognition of the contribution of germline variants to development of myeloid neoplasms, only two large-scale case-control genome-wide association studies (GWASs) have been conducted to identify variants that predispose to AML. Importantly, these studies were dedicated to AML predisposition in general, without investigation of molecularly distinct AML subtypes. Thus, we performed the first dedicated meta-analysis combining the two GWASs to investigate predisposing variants to cytogenetic AML subsets characterized by recurrent translocations and inversions. Methods: Two sets of adult de novo AML patients treated on Alliance for Clinical Trials in Oncology (Alliance) protocols, and two sets of adult de novo AML patients reported to CIBMTR (2000-11) from DISCOVeRY-BMT cohorts were compared with four sets of population-matched non-leukemic individuals of European ancestry. Illumina Infinium arrays were used for genotyping. The haplotype reference consortium was used for imputation and comparisons were performed using SNPtest and METAL with fixed-effects, for CBF-AML (n=251, including t(8;21), n=115; inv(16), n=136) and AML with 11q23/KMT2A translocations (n=177). Blood or bone marrow samples from subsets of these patients and additional AML patients with other cytogenetic abnormalities were used for total transcriptome RNA sequencing with Illumina instruments. Results: Two risk loci reached genome-wide significance in AML patients with 11q23/KMT2A translocations (Fig 1A). The most significant single nucleotide polymorphism (SNP) in the 4q21.3 risk locus, rs17668899[A] (P = 2.32 x 10-8, odds ratio [OR] = 3.92 [2.43-6.32]) is in intron 6 of the AFF1 gene (also called AF4) (Fig 1B), within an enhancer that interacts with the AFF1 transcription start site (Fig 1C, left). KMT2A-translocated AML patients with the risk allele had higher blast expression of AFF1 compared to those homozygous for the non-risk allele, although the trend did not reach significance (Fig 1D). Notably, AFF1 encodes a subunit of the super-elongation-complex (SEC) that acts as Pol II-associated master regulator of global transcription elongation. AFF1 is a common translocation partner of KMT2A in patients with acute lymphoblastic leukemia with t(4;11)(q21;q23), and is required for KMT2A-mediated leukemogenesis. We observed significantly higher AFF1 expression in both KMT2A-translocated AML and cytogenetically normal (CN) AML compared to CBF-AML (Fig 1E). The suggested role of AFF1/SEC is consistent with recent studies showing an important role for DOT1L, H3K79 methylation, and transcriptional elongation in NPM1-mutant AML (the most common subtype of CN-AML). Outcome analysis showed higher expression of AFF1 associated with shorter disease-free (DFS) in patients & lt; 60 years treated on Alliance studies (hazard ratio [HR] = 1.36, P=0.04; Fig 1F). The second KMT2A-translocated AML risk locus was located at 22q13.31, and the most significant SNP was rs62231468[A] (P = 4.95 x 10-9, OR = 3.25). rs62231468 is immediately 5' of the LDOC1L gene (a retrotransposon GAG-related gene, also called RTL6), and analysis of expression quantitative trait loci (eQTL) showed association of rs62231468[A] with higher LDOC1L expression, consistent with its location in an active enhancer (Fig 1C, right). The association between rs62231468[A] and higher LDOC1L expression was validated in leukemic blast expression from a set of 449 AML patients of any cytogenetic subset (Fig 1G). Notably, higher LDOC1L expression was associated with shorter DFS and overall survival (OS) in Alliance patients & lt; 60 years (DFS, HR = 1.25, P=0.03; OS, HR = 1.46, P & lt;0.001; Fig 1H-I). Analysis of patients with CBF-AML identified rs71568004[C] as more common in CBF-AML patients compared to controls (P = 3.84 x 10-8 , OR = 3.05 [2.05-4.53] ). This SNP is ~50kb 5' of the MARCKS gene located at 6q21, but genomic context analysis did not reveal any clear associations with MARCKS expression. Conclusions: Our first assessment of risk alleles for cytogenetic subsets of AML identified two novel independent risk loci associated with 11q23/KMT2A-translocated AML, and one risk locus associated with CBF-AML. These data suggest an important, subtype-specific role for transcriptional elongation in AML and that functional studies of retro transposition elements should be undertaken in leukemogenesis. Figure Disclosures Walker: Karyopharm: Current Employment, Current equity holder in publicly-traded company; Vigeo Therapeutics: Consultancy. Powell:Rafael Pharmaceuticals: Consultancy, Other: Advisor, Research Funding; Jazz Pharmaceuticals: Consultancy, Other: Advisor, Research Funding; Genentech: Research Funding; Novartis: Research Funding; Pfizer: Research Funding. Kolitz:Pfizer: Membership on an entity's Board of Directors or advisory committees; Magellan: Membership on an entity's Board of Directors or advisory committees. Pasquini:Bristol Myers Squibb: Consultancy; BMS: Membership on an entity's Board of Directors or advisory committees, Research Funding; Amgen: Other; Novartis: Research Funding; Kite: Research Funding. McCarthy:Karyopharm: Consultancy, Honoraria; Magenta: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Advisory Board; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Advisory Board; Takeda: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Advisory Board; AbbVie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Advisory Board; Genentech: Consultancy, Honoraria; Starton: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Advisory Board; Juno Therapeutics, a Bristol-Myers Squibb Company: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Advisory Board , Research Funding is to Roswell Park, Research Funding. Stone:AbbVie: Consultancy, Research Funding; Actinium: Consultancy; Agios: Consultancy, Research Funding; Argenx: Consultancy, Other: Data and safety monitoring board; Arog: Research Funding; Astellas: Consultancy, Membership on an entity's Board of Directors or advisory committees; AstraZeneca: Consultancy; Biolinerx: Consultancy; Celgene: Consultancy, Other: Data and safety monitoring board; Jazz: Consultancy; Novartis: Consultancy, Research Funding; Otsuka: Consultancy; Pfizer: Consultancy; Trovagene: Consultancy; Takeda: Consultancy; Daiichi-Sankyo: Consultancy; Elevate: Consultancy; Gemoab: Consultancy; Janssen: Consultancy; Macrogenics: Consultancy; Hoffman LaRoche: Consultancy; Stemline: Consultancy; Syndax: Consultancy; Syntrix: Consultancy; Syros: Consultancy. Byrd:Trillium: Research Funding; Novartis: Research Funding; Kartos Therapeutics: Research Funding; Syndax: Research Funding; Vincera: Research Funding; Acerta Pharma: Research Funding; Janssen: Consultancy; Leukemia and Lymphoma Society: Other; Pharmacyclics LLC, an AbbVie Company, Gilead, TG Therapeutics, BeiGene: Research Funding; Pharmacyclics LLC, an AbbVie Company, Janssen, Novartis, Gilead, TG Therapeutics: Other; Pharmacyclics LLC, an AbbVie Company, Gilead, TG Therapeutics, Novartis, Janssen: Speakers Bureau. Eisfeld:Karyopharm: Current Employment, Current equity holder in publicly-traded company; Vigeo Therapeutics: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 2853-2853
    Abstract: Background: c-MYC is a transcription factor that promotes oncogenesis by activating and repressing its target genes that control cell growth, metabolism, and proliferation. MYC is deregulated in a large proportion of aggressive B-cell lymphomas. A typical example is the Double-Hit Lymphoma (DHL) and Double-Expression Lymphoma (DEL) which present with a rapidly progressing clinical course, refractory to treatment, poor clinical outcome, and currently considered incurable. Nevertheless, MYC is considered as an "undruggable" target since it has no "active site" amenable to binding by conventional small molecule inhibitors. Moreover, MYC has a broad spectrum of functions in cell proliferation, survival, metabolism, and others, so direct inhibition would likely cause severe side effects. Besides direct inhibition, another practical strategy is to target druggable proteins that are essential for the viability of MYC-driven tumors, inducing MYC-dependent "synthetic lethality". The advantage of such approach is a capability of killing tumor cells discriminately, while leaving non-tumor cells intact or less influenced. This study is designed to identify such targets and explore practical novel strategies to treat MYC-driven lymphomas, especially DHL/DEL. Methods and Results: By integrating activity-based proteomic profiling and drug screens in isogenic MYC on/off lymphoma cells, we identified polo-like kinase-1 (PLK1) as an essential regulator of the MYC-dependent kinome in DHL/DEL. Notably, PLK1 was expressed at high levels in DHL, correlated with MYC expression and connoted poor outcome. Further, PLK1 is directly activated by MYC on transcriptional level and in turn, PLK1 signaling augmented MYC protein stability by promoting its phosphorylation and suppressing its degradation. Thus, MYC and PLK1 form a feed-forward circuit in lymphoma cells. Finally, both in vitro and in vivo studies demonstrated that inhibition of PLK1 triggered degradation of MYC and of the anti-apoptotic protein MCL1, and PLK1 inhibitors showed synergy with BCL-2 antagonists in blocking DHL/DEL cell growth, survival, and tumorigenicity. These data support that PLK1 is a promising therapeutic target in MYC-driven lymphomas. Brief summary: Functional pharmacoproteomics identified PLK1 as a therapeutic vulnerability for MYC-driven lymphoma, which was a synthetic lethal for DHL/DEL when targeted with BCL-2 inhibitors. Disclosures Vose: Roche: Honoraria; Merck Sharp & Dohme Corp.: Research Funding; Acerta Pharma: Research Funding; Seattle Genetics, Inc.: Research Funding; Novartis: Honoraria, Research Funding; Kite Pharma: Research Funding; Bristol Myers Squibb: Research Funding; Epizyme: Honoraria; Legend Pharmaceuticals: Honoraria; Abbvie: Honoraria; Celgene: Research Funding; Incyte Corp.: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 128, No. 26 ( 2016-12-29), p. 3083-3100
    Abstract: CD37 positivity predicts significantly better survival for DLBCL, and is superior to other prognostic factors in GCB-DLBCL. CD37 loss is an important risk factor for R-CHOP resistance in both GCB- and ABC-DLBCL.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 136, No. Supplement 1 ( 2020-11-5), p. 5-6
    Abstract: Background:T-follicular helper (TFH) cells are a novel CD4+ T-cell subset that participates in germinal center maintenance/proliferation. Proliferation of TFH is a postulated mechanism of pathogenesis for T-cell lymphomas (AITL, PTCL and others). The inducible T-cell costimulator (ICOS) is highly expressed in TFHand hence in AITL, PTCL FH type, and some cutaneous T cell lymphomas (CTCL) and follicular lymphomas (FL). MEDI-570 is a human afucosylatedIgG1 kappa monoclonal antagonistic antibody directed against ICOS, which binds to and eliminates ICOS expressing cells in preclinical in vivo models. We investigate the safety, pharmacokinetics (PK) and clinical activity of ICOS blockade by MEDI-570 in T-cell lymphomas. Methods: NCI-9930 is a Phase I study of MEDI-570 in R/R malignant lymphomas. It is a 3+3 study design that evaluated 5 dose levels . MEDI-570 was administered intravenously (IV) every 3 weeks for 12 cycles. Eligibility criteria included: age & gt;18 years, ECOG & lt;2, diagnosis of R/R PTCL, AITL, CTCL, mycosis fungoides, or FL, that have received and are refractory to at least 1 line of therapy (at least 2 lines of therapy and post autologous cell transplantation for FL), adequate organ functions and CD4+ T-cells & gt;200 cells/uL ( & gt;100 for AITL). Primary endpoints are safety of MEDI-570, dose limiting toxicities (DLT)s and its recommended phase 2 dose (RP2D). Secondary endpoints include: pharmacokinetics (PK), overall response rate (ORR) based on Lugano classification and progression-free survival (PFS). Exploratory endpoints include various correlative studies. This study is supported by the National Cancer Institute Experimental Therapeutics Clinical Trials Network (ETCTN) and Early Drug Development Opportunity Program (EDDOP) (NCT02520791). Results: As of June 2020, the dose escalation phase has been completed. Patients were enrolled and evaluable for safety and efficacy. Median age is 63 (range: 29-80), female/male ratio=5/13, histologic types consisted in AITL (n= 12, 71%), PTCL NOS (n=3, 18%) and CTCL (n=2, 12%). The median number of prior therapies were 7.5 (1 - 16), stage III/IV in 83%, prior autologous HCT in 18%. There were 4 partial remissions (PR) and 7 with stable disease (SD), all patients with AITL. Two patients (1 PR and 1 SD) remain on treatment. One patient completed treatment and remains in a stable PR for over a year without further treatment. One patient in PR underwent allogeneic hematopoietic transplantation (HCT) and remains in remission. The most common grade 3/4 AEs were decreased CD4+ T-cells as expected anemia (12%), hypophosphatemia (12%), thrombocytopenia (6%), infusion related reactions (6%). No DLTs were reported, and the maximum tolerated dose was not established. Initial PK analyses demonstrated that MEDI-570 systemic exposure increased in a dose-dependent manner, and a RP2D was determined. Peripheral blood flow cytometry analysis of T-cell subsets showed that MEDI-570 caused a rapid and sustained decrease in CD4+ T-cells. It also resulted in reductions in circulating of certain ICOS+ T-cells, especially on days 7-21 post treatment. Conclusion: MEDI-570 was safe, well tolerated and showed promising clinical activity in poor-risk refractory and heavily pretreated AITL. A RP2D was established. MEDI-570 results in sustained reduction of the targeted ICOS+T lymphocytes. The study continues enrolling in the expansion phase. Disclosures Chavez: Morphosys: Consultancy, Speakers Bureau; Merck: Research Funding; Bayer: Consultancy; BeiGene: Speakers Bureau; Karyopharm: Consultancy; AbbVie: Consultancy; Genentech: Speakers Bureau; AstraZeneca: Speakers Bureau; Gilead: Consultancy; Verastem: Consultancy; Epizyme: Speakers Bureau; Celgene: Consultancy; Novartis: Consultancy; Kite, a Gilead Company: Consultancy, Speakers Bureau; Pfizer: Consultancy. William:Dova: Research Funding; Seattle Genetics: Research Funding; Incyte: Research Funding; Merck: Research Funding; Kyowa Kirin: Consultancy, Honoraria; Celgene: Consultancy, Honoraria; Guidepoint Global: Consultancy. Brammer:Celgene Corporation: Research Funding; Seattle Genetics, Inc.: Speakers Bureau. Smith:Pharmacyclics: Research Funding; Genentech/Roche: Consultancy, Other: Support of parent study and funding of editorial support, Research Funding; Acerta: Research Funding; BMS: Consultancy; Karyopharm: Consultancy, Research Funding; TG Therapeutics: Consultancy, Research Funding; FortySeven: Research Funding; Celgene: Consultancy, Research Funding; Janssen: Consultancy. Prica:astra zeneca: Honoraria; seattle genetics: Honoraria; Gilead: Honoraria. Zain:Kyowa Kirlin: Research Funding; Mundai Pharma: Research Funding; Seattle Genetics: Research Funding. Glenn:Genentech: Research Funding. Mehta-Shah:Verastem: Research Funding; Karyopharm Therapeutics: Consultancy; Kyowa Kirin: Consultancy; Innate Pharmaceuticals: Research Funding; Celgene: Research Funding; Genetech: Research Funding; C4 Therapeutics: Consultancy; Bristol Myers-Squibb: Research Funding. Boutrin:Astrazeneca: Current Employment, Current equity holder in private company. Zhao:Astrazeneca: Current Employment, Current equity holder in private company. Cheng:Astrazeneca: Current Employment, Current equity holder in private company. Standifer:Astrazeneca: Current Employment, Current equity holder in private company. Carlesso:Astrazeneca: Current Employment, Current equity holder in private company. Siu:Shatthucks: Research Funding; Symphogen: Consultancy, Research Funding; Tessa: Consultancy; Treadwell Therapeutics: Consultancy, Current Employment; Pfizer: Research Funding; Voronol: Consultancy; Rubius Therapeutics: Consultancy; Abbvie: Research Funding; Agios: Current equity holder in publicly-traded company; Arvinas: Consultancy; Astellas: Research Funding; AstraZeneca: Consultancy, Research Funding; Bayer: Research Funding; Boerhinger-Ingelheim: Research Funding; Bristol-Myers Squibb: Research Funding; Glaxo Smith Kline: Research Funding; Intensity Therapeutics: Research Funding; Navire: Consultancy; Novartis: Research Funding; Oncorus: Consultancy; Mirati: Consultancy, Research Funding; Roche/Genentech: Consultancy; Relay Therapeutics: Consultancy; Roche: Consultancy; Merck: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 131, No. 20 ( 2018-05-17), p. 2183-2192
    Abstract: PK deficiency manifests a broad spectrum in anemia severity that moderately improves after splenectomy. Close attention to monitoring for iron overload, gallstones, and other complications is recommended in all patients with PK deficiency.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood Advances, American Society of Hematology, Vol. 7, No. 13 ( 2023-07-11), p. 2972-2982
    Abstract: Acute myeloid leukemia (AML) with retinoic acid receptor γ (RARG) rearrangement has clinical, morphologic, and immunophenotypic features similar to classic acute promyelocytic leukemia. However, AML with RARG rearrangement is insensitive to alltrans retinoic acid (ATRA) and arsenic trioxide (ATO) and carries a poor prognosis. We initiated a global cooperative study to define the clinicopathological features, genomic and transcriptomic landscape, and outcomes of AML with RARG rearrangements collected from 29 study groups/institutions worldwide. Thirty-four patients with AML with RARG rearrangements were identified. Bleeding or ecchymosis was present in 18 (54.5%) patients. Morphology diagnosed as M3 and M3v accounted for 73.5% and 26.5% of the cases, respectively. Immunophenotyping showed the following characteristics: positive for CD33, CD13, and MPO but negative for CD38, CD11b, CD34, and HLA-DR. Cytogenetics showed normal karyotype in 38% and t(11;12) in 26% of patients. The partner genes of RARG were diverse and included CPSF6, NUP98, HNRNPc, HNRNPm, PML, and NPM1. WT1- and NRAS/KRAS-mutations were common comutations. None of the 34 patients responded to ATRA and/or ATO. Death within 45 days from diagnosis occurred in 10 patients (∼29%). At the last follow-up, 23 patients had died, and the estimated 2-year cumulative incidence of relapse, event-free survival, and overall survival were 68.7%, 26.7%, and 33.5%, respectively. Unsupervised hierarchical clustering using RNA sequencing data from 201 patients with AML showed that 81.8% of the RARG fusion samples clustered together, suggesting a new molecular subtype. RARG rearrangement is a novel entity of AML that confers a poor prognosis. This study is registered with the Chinese Clinical Trial Registry (ChiCTR2200055810).
    Type of Medium: Online Resource
    ISSN: 2473-9529 , 2473-9537
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2023
    detail.hit.zdb_id: 2876449-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 4096-4096
    Abstract: Peripheral T-cell lymphoma (PTCL) is a group of clinically and pathologically heterogeneous non-Hodgkin lymphomas (NHL). Using gene expression profiling (GEP), we have defined molecular classifiers for PTCL subtypes reflecting their pathobiology and oncogenic pathways (Iqbal et al. 2014). We have also shown associations of specific mutations with the molecular subgroups (Wang et al. 2015). Although genomic information is increasing, the pathogenetic mechanisms of PTCLs remain largely unknown. Therefore, we analyzed copy number variation (CNV) and GEP to identify unique genetic abnormalities in the defined PTCL molecular subgroups. CNV data were generated on fresh frozen or formalin-fixed paraffin-embedded genomic DNA (n=114) on 3 Affymetrix platforms (SNP 6.0, 250K SNP, and OncoScan). Two published cohorts (PTCL-NOS, Hartmann et al. 2010; ALCL, Boi et al. 2013) were included for validation. The gene expression analysis, morphological review and clinical characteristics of these cases have been included in previous studies (Iqbal et al. 2010, 2014). Angioimmunoblastic T-cell lymphoma (AITL) represents 20% of all PTCL cases. The most recurrent CNV in AITL was chromosome (chr) 5 gain (39%), followed by chr 21 gain (21%). Interestingly, chr 21 gain co-occurred with chr 5 gain (p=0.003). No recurrent losses (≥20%) were identified among these cases. Molecularly re-classified AITL cases from morphologically classified PTCL-NOS cases showed concordant results with bonafide AITL cases. Of the commonly mutated genes, DNMT3A, IDH2, RHOA and TET2, only IDH2R172Kshowed a significant association (p=0.012) with chr 5 gain. GEP showed enrichment of gene signatures associated with oxidative phosphorylation (PGC-1α target genes) in cases with chr 5 gain. PTCL, not otherwise specified (PTCL-NOS) is the most common PTCL subtype and cannot be further sub-classified using conventional approaches; however, we have identified 2 molecular subgroups within PTCL-NOS, the GATA3 and TBX21 subgroups which are related to 2 distinct T-helper subsets (Iqbal et al. 2014), by employing GEP. Consistent with earlier observations (Hartmann et al. 2010), PTCL-NOS showed remarkably varied CNVs with nearly 50% of cases showing high CNV frequencies. When correlated with molecular subgroups, distinctive CNVs were observed in the molecular GATA3 and TBX21 subgroups. The GATA3 subgroup displayed a large assortment of CNVs. Complete or partial gain of chr 7 (57%) was the most recurrent gain in these cases. Losses affecting 17p, 10q and 9p21, encompassing tumor suppressors such as TP53 (57%), PTEN (43%) and CDKN2A (43%), were frequent in the GATA3 subgroup. The TBX21 subgroup had significantly fewer CNVs, as none were recurring (≥20%); but gains of 5p or 11p were observed in 14%. Additionally, PTCL-NOS cases with ≥10% abnormal genome had significantly poorer overall survival (p=0.012) compared to those with fewer abnormalities. This finding validates the GEP molecularly defined subgroups, as the GATA3 subgroup displayed more CNVs and has been associated with a worse prognosis compared to the TBX21 subgroup (Iqbal et al. 2014). We were able to distinguish CNVs characteristic of the different entities, including the co-occurrence of chr 5 and 21 gains specific in AITL. Gain of 1q (complete or partial) was identified in the GATA3 subgroup of PTCL-NOS and anaplastic lymphoma kinase (ALK) (-) ALCL with equal frequencies (~ 36%), but only 16% in ALK(+) ALCL. Complete or partial gain of chr 7 was also observed in ALCL, but at a considerably lower frequency than in the GATA3 subgroup. Additionally, gain of chr 18 or regions of 17q, and loss of 5q or regions on both arms of chr 9, were more frequent in the GATA3 subgroup compared to other entities. The TBX21 subgroup was primarily differentiated from the GATA3 subgroup by presence of fewer CNVs. Our analysis provides a framework for future investigations into the molecular pathogenesis of PTCL, and highlights potential candidate oncogenes and tumor suppressors deregulated by copy number aberrations. Comparative analysis revealed that certain chromosomal abnormalities are entity-specific. AITL cases with IDH2R172K also had trisomy 5 suggesting that these oncogenic events cooperate in malignant transformation. Thus, the complexity of PTCL is finally becoming clearer with the integration of high resolution molecular techniques for global genomic analysis. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 123, No. 19 ( 2014-05-08), p. 2915-2923
    Abstract: Diagnostic signatures for PTCL subtypes and 2 novel subgroups with distinct oncogenic pathway and prognostic importance in PTCL-NOS were identified. Demonstrated that ALK(–) ALCL is a distinct molecular entity and the tumor microenvironment has prognostic significance in AITL patients.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages