Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society of Hematology  (3)
  • 1
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 1608-1608
    Abstract: Background: Dyskeratosis congenita (DKC) is an inherited bone marrow failure syndrome typified by reticulated skin pigmentation, nails dystrophy, and mucosal leukoplakia. Hoyeraal-Hreidarsson syndrome (HHS) is considered to be a severe form of DKC. Unconventional forms of DKC, which develop slowly in adulthood without physical anomalies characteristic to DKC, have been reported. Clinical and genetic features of DKC have been investigated in Caucasian, Black, and Hispanic populations, but never in Asian populations. Therefore, the present study aimed to determine the clinical and genetic features of DKC, HHS, and cryptic DKC among Japanese patients. Methods: We analyzed 16 patients diagnosed with DKC, 3 patients with HHS, and 21 patients with cryptic DKC between 2003 and 2014 in Japan. Telomere length was measured by Southern blot and/or flow-fluorescence in situ hybridization methods. Mutation analyses were performed using direct sequencing for DKC1, TERC, TERT, NOP10, NHP2, and TINF2. In some patients, we also analyzed the exon sequence and genome copy number using a next-generation sequencer. Results: Age at diagnosis was significantly older in the following order: HHS, DKC, and cryptic DKC (p 〈 0.001). Twenty-five percent of DKC and HHS patients, and 33% of cryptic DKC patients, were women. Two DKC patients and six cryptic DKC patients had a family history. Characteristic findings of DKC included nail dystrophy (93.75%), reticulated skin pigmentation (87.5%), and lingual leukoplakia (81.3%), with 11/15 (68.8%) patients showing all three physical abnormalities. Characteristic findings of HHS were reticulated skin pigmentation 100%), nail dystrophy (66.7%), and lingual leukoplakia (33.3%); none of the patients had all three abnormalities. Regarding peripheral blood anomalies in DKC patients, peripheral blood count results at diagnosis revealed a marked reduction in platelet count among the three types of blood cells assessed: 7/16 (43.8%) patients had a platelet count ≤20000/µl, whereas only 1/16 (6.3%) patient had a neutrophil count ≤1000/µl or Hb ≤7g/dl. Telomere length analysis revealed that telomere length was shortened in 6/7 (85.7%) DKC patients, and all HHS and cryptic DKC patients. Mutations of telomere regulated genes were found in 11/16 (68.7%) DKC patients (DKC1 mutations in 5 patients, TINF2 mutations in 3 patients, TERT mutations in 2 patients, and TERC mutations in 1 patient). Among these, those harboring the homozygous TERT c.1002_1004del mutation showed a large deletion in the region encoding the TERT gene in one allele on chromosome number 5 by SNP array analysis. This is the first report of a large deletion in the TERT gene. With respect to HHS patients, no causative gene mutation could be identified for any of the patients. With respect to cryptic DKC patients, 11/21 (52.4%) patients had gene mutations (TERT mutations in 5 patients, TINF2 mutations in 3 patients, RTEL1 mutations in 2 patients (1 family), and TERC mutations in 1 patient). Those with RTEL1 mutations had mutations of both alleles, whereas those with the other mutations had heterozygous mutations. While the RTEL1 mutation is often discovered in HHS patients in the form of autosomal recessive inheritance, these two patients did not have apparent physical abnormalities characteristic to DKC, and thus represent the first case of cryptic DKC involving RTEL1 mutations. Immunosuppressive agents such as cyclosporine and steroids were administered to five patients, but no apparent efficacy was observed. Anabolic steroid hormones were also administered to five patients, and mild improvement in anemia was observed in one DKC patient, and mild improvement in reduced platelet count in one HHS patient. Hematopoietic stem cell transplantation was performed in eight patients, resulting in long-term survival in six of these patients (post-transplantation 10-year survival rate, 58.3%). Conclusions: The present study is the first to address DKC, HHS, and cryptic DKC in Japanese people, an Asian race. We found marked reductions in platelet counts in DKC patients in blood tests at diagnosis, a high prevalence of TINF2 mutations as the causative genetic mutation, and the existence of DKC patients with large deletions in the TERT gene and cryptic DKC patients with RTEL1 mutations on both alleles. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 119, No. 10 ( 2012-03-08), p. 2376-2384
    Abstract: Fifty percent of Diamond-Blackfan anemia (DBA) patients possess mutations in genes coding for ribosomal proteins (RPs). To identify new mutations, we investigated large deletions in the RP genes RPL5, RPL11, RPL35A, RPS7, RPS10, RPS17, RPS19, RPS24, and RPS26. We developed an easy method based on quantitative-PCR in which the threshold cycle correlates to gene copy number. Using this approach, we were able to diagnose 7 of 27 Japanese patients (25.9%) possessing mutations that were not detected by sequencing. Among these large deletions, similar results were obtained with 6 of 7 patients screened with a single nucleotide polymorphism array. We found an extensive intragenic deletion in RPS19, including exons 1-3. We also found 1 proband with an RPL5 deletion, 1 patient with an RPL35A deletion, 3 with RPS17 deletions, and 1 with an RPS19 deletion. In particular, the large deletions in the RPL5 and RPS17 alleles are novel. All patients with a large deletion had a growth retardation phenotype. Our data suggest that large deletions in RP genes comprise a sizable fraction of DBA patients in Japan. In addition, our novel approach may become a useful tool for screening gene copy numbers of known DBA genes.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 116, No. 21 ( 2010-11-19), p. 4231-4231
    Abstract: Abstract 4231 Introduction: Fifty percent of Diamond–Blackfan anemia (DBA) patients possess mutations in ribosomal protein genes. Although several ribosomal protein genes, RPL5, RPL11, RPL35A, RPS7, RPS10, RPS17, RPS19, RPS24, and RPS26, have been reported to be mutated in some DBA patients, including point mutations, nonsense mutations, deletions, splice site mutations, and translocations, other DBA patients appear to have intact ribosomal protein genes. To identify new mutations in ribosomal protein genes from a different aspect, we focused on extensive deletions in these genes, such as mutations involving loss of a whole allele. In this study, we applied quantitative genomic PCR, and successfully developed a convenient method for detecting extensive deletions designated the “DBA gene copy number assay”. Methods: DBA patients should have an intact allele and a mutated allele for the responsible ribosomal protein gene, meaning that they will have an abnormal karyotype (gene copy number of N) if they have an extensive deletion. We attempted to clarify the copy numbers of ribosomal protein genes by the difference in a 1-cycle delay of threshold in a quantitative PCR (q-PCR) assay. To detect extensive deletions, at least 2 sets of gene-specific primers for each DBA responsible gene (RPL5, RPL11, RPL35A, RPS7, RPS10, RPS17, RPS19, RPS24, and RPS26) were prepared. Appropriate primers to fit the setting that the threshold cycle (Ct) of the q-PCR should occur within 1 cycle of the Ct scores of other primer sets were selected. After validation, we identified 6, 3, 4, 3, 3, 6, 9, 3, and 2 specific primer sets for RPL5, RPL11, RPL35A, RPS7, RPS10, RPS17, RPS19, RPS24, and RPS26, respectively. By simply looking at the q-PCR amplification curves by eye, we were easily able to judge the copy numbers of 2N (normal) or N (abnormal) for the ribosomal protein genes. Results: We performed the DBA gene copy number assay for 14 randomly selected undiagnosed patients from the Japanese DBA genomic resource at the University of Hirosaki, who had no mutations by genomic sequencing analyses. For each case, all the DBA responsible genes were confirmed using the diagnostic primers. The results of the DBA gene copy number assays revealed that 5 of the 14 probands (36%) had an extensive deletion in one of the DBA responsible genes. As an interesting case among the 5 positive cases, we confirmed an extensive deletion in the RPS19 gene. The Ct scores for 4 of the 9 primer sets for RPS19 demonstrated a 1-cycle delay, while the scores for the other 5 primer sets were normal. By genomic PCR amplification analyses, we identified a deletion from nt. -1400 to +5757 (7157 nucleotides) in the RPS19 gene. The deleted region included the promoter region, and exons 1, 2, and 3 of the RPS19 gene. The remaining 4 cases were 1 proband with an RPL5 deletion, 1 with an RPL35A deletion and 2 with RPS17 deletions. In particular, the extensive deletions in the RPL5 and RPS17 alleles are the first such cases reported. Discussion: Since it has been difficult to address the loss of a whole allele in DBA, such mutations have not been precisely examined within the DBA responsible genes. Our data suggest that extensive deletions in ribosomal protein genes comprise a significant proportion of DBA cases in Japan. Our novel method could become a useful tool for screening the gene copy numbers of ribosomal protein genes, and for identifying new pathological mutations. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages