Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal for ImmunoTherapy of Cancer, BMJ, Vol. 9, No. Suppl 2 ( 2021-11), p. A831-A831
    Abstract: 4-1BB (CD137) is an activation-induced co-stimulatory receptor that regulates immune responses of activated CD8+ T cells and NK cells. Leveraging the therapeutic benefit of 1st generation 4-1BB monospecifics has been challenging due to dose limiting hepatotoxicity. To minimize systemic immune toxicities and enhance activity at the tumor site, we have developed a novel 4-1BB x 5T4 bispecific antibody that stimulates 4-1BB function only when co-engaged with 5T4, a highly selective tumor-associated antigen. The combined preclinical dataset presented here provides an overview of the potential indication landscape, mechanism of action and the efficacy and safety profile of ALG.APV-527, supporting its advancement into the clinic. Methods Genevestigator Software was used to analyze curated transcriptomic data from bulk tumor mRNA-sequencing data libraries and from single cell RNA-seq libraries for the expression profiles of CD8, 4-1BB and 5T4 across selected human solid tumor datasets. ADCC and ADCP reporter bioassays were utilized to assess Fc engagement by ALG.APV-527. For in vitro tumor lysis studies, human T cells were co-cultured with labelled tumor cells and sub-optimally activated with anti-CD3. Cytotoxicity of tumor cells were continually assessed using a Live-Cell Analysis System. Results Dual expression of CD8 and 5T4 occurred in many tumor types and correlated well with indications that are pursued in the clinical development of ALG.APV-527. 4-1BB expression was observed in tumor-derived lymphoid subpopulations, especially in those with an exhausted phenotype. Since ALG.APV-527 is designed with a non-Fcγ receptor binding Fc, minimal ADCC & ADCP was induced in vitro. Additionally, ALG.APV-527 enhanced primary immune cell-mediated killing of 5T4-expressing tumor cells when compared to anti-CD3 alone, demonstrating the potential benefit of 4-1BB agonism for enhancing cytotoxic anti-tumor responses in the clinic. Conclusions ALG. APV-527 is designed to elicit safe and efficacious 4-1BB-mediated antitumor activity in a range of 5T4-expressing tumor indications. Transcriptional profiling of patient tumor samples demonstrates 4-1BB expression in multiple tumor-infiltrating lymphocyte subsets and identifies potential indications with 5T4 expression and CD8+ T cell infiltration. The unique design of the molecule minimizes systemic immune activation and hepatotoxicity, allowing for highly efficacious tumor-specific responses as demonstrated by potent activity in in vitro models. Based on these preclinical data, ALG.APV-527 is a promising anti-cancer therapeutic for the treatment of a variety of 5T4-expressing solid tumors and is progressing towards a phase I clinical trial in 2021.
    Type of Medium: Online Resource
    ISSN: 2051-1426
    Language: English
    Publisher: BMJ
    Publication Date: 2021
    detail.hit.zdb_id: 2719863-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal for ImmunoTherapy of Cancer, BMJ, Vol. 9, No. Suppl 2 ( 2021-11), p. A785-A785
    Abstract: Alligator's Neo-X-Prime platform aims to enable antigen presenting cells to efficiently enhance priming of tumor neoantigen-specific T cells with the goal of overcoming PD-1 resistance in certain tumor types. We hypothesize that binding of a CD40 x TAA bispecific antibody (bsAb) to CD40 on dendritic cells (DCs) and a tumor-associated antigen (TAA) on tumor exosomes or tumor debris leads to (i) activation of the DC, (ii) uptake of the tumor material, (iii) cross-presentation of tumor-derived neoantigen (present in exosomes or debris) and, iv) priming of tumor neoantigen-specific T cells, resulting in an increased quantity and/or quality of the tumor-targeting T cell pool. Methods Functionality was evaluated in vitro using CD40 reporter cells and monocyte-derived DCs, co-cultured with cells expressing TAA. Further, co-localization of TAA-expressing cellular debris with a CD40-expressing human B cell line in the presence of bsAbs was assessed using live cell imaging. In vivo, anti-tumor efficacy and immunological memory were assessed in human CD40 transgenic (hCD40tg) mice bearing MB49 bladder carcinoma tumors transfected with human TAA or controls. T cells isolated from OVA-specific TCR-transgenic mice were used to evaluate the effect of Neo-X-Prime bsAbs on antigen-specific T cell expansion in the presence of hCD40tg DCs and exosomes from MB49 tumors transfected with both human TAA and OVA using flow cytometry. Results Using CEA as a highly expressed TAA, we have developed lead Neo-X-Prime CD40-CEA bsAbs engineered to achieve an optimal profile. Further, using Neo-X-Prime concept molecules targeting EpCAM, we have demonstrated the ability to mediate co-localization of tumor debris and CD40 expressing antigen presenting cells that is dependent on the receptor density of the TAA. We have further shown that addition of Neo-X-Prime bsAbs to a co-culture of murine DCs, T cells and tumor-derived exosomes induces increased expansion of model neoantigen-specific T cells. In vivo, Neo-X-Prime bsAbs display a potent, TAA-dependent anti-tumor effect that is superior to CD40 mAbs. Cured mice develop a broad immunological memory that is not dependent on expression of the TAA. The tumor-localizing property of Neo-X-Prime bsAbs also shows potential for improved safety compared to CD40 monospecific antibodies. Conclusions Neo-X-Prime bsAbs have the potential to tumor-selectively target CD40-expressing antigen-presenting cells to mediate an expansion of the tumor-specific T cell repertoire, resulting in increased T cell infiltration and potent anti-tumor effects. Ethics Approval All experiments were performed after approval from the Malmö/Lund Animal Ethics Committee.
    Type of Medium: Online Resource
    ISSN: 2051-1426
    Language: English
    Publisher: BMJ
    Publication Date: 2021
    detail.hit.zdb_id: 2719863-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal for ImmunoTherapy of Cancer, BMJ, Vol. 10, No. 11 ( 2022-11), p. e005018-
    Abstract: Indications with poor T-cell infiltration or deficiencies in T-cell priming and associated unresponsiveness to established immunotherapies represent an unmet medical need in oncology. CD40-targeting therapies designed to enhance antigen presentation, generate new tumor-specific T cells, and activate tumor-infiltrating myeloid cells to remodel the tumor microenvironment, represent a promising opportunity to meet this need. In this study, we present the first in vivo data supporting a role for tumor-associated antigen (TAA)-mediated uptake and cross-presentation of tumor antigens to enhance tumor-specific T-cell priming using CD40×TAA bispecific antibodies, a concept we named Neo-X-Prime. Methods Bispecific antibodies targeting CD40 and either of two cell-surface expressed TAA, carcinoembryonic antigen-related cell adhesion molecule 5 (CEA) or epithelial cell adhesion molecule (EpCAM), were developed in a tetravalent format. TAA-conditional CD40 agonism, activation of tumor-infiltrating immune cells, antitumor efficacy and the role of delivery of tumor-derived material such as extracellular vesicles, tumor debris and exosomes by the CD40×TAA bispecific antibodies were demonstrated in vitro using primary human and murine cells and in vivo using human CD40 transgenic mice with different tumor models. Results The results showed that the CD40×TAA bispecific antibodies induced TAA-conditional CD40 activation both in vitro and in vivo. Further, it was demonstrated in vitro that they induced clustering of tumor debris and CD40-expressing cells in a dose-dependent manner and superior T-cell priming when added to dendritic cells (DC), ovalbumin (OVA)-specific T cells and OVA-containing tumor debris or exosomes. The antitumor activity of the Neo-X-Prime bispecific antibodies was demonstrated to be significantly superior to the monospecific CD40 antibody, and the resulting T-cell dependent antitumor immunity was directed to tumor antigens other than the TAA used for targeting (EpCAM). Conclusions The data presented herein support the hypothesis that CD40×TAA bispecific antibodies can engage tumor-derived vesicles containing tumor neoantigens to myeloid cells such as DCs resulting in an improved DC-mediated cross-priming of tumor-specific CD8 + T cells. Thus, this principle may offer therapeutics strategies to enhance tumor-specific T-cell immunity and associated clinical benefit in indications characterized by poor T-cell infiltration or deficiencies in T-cell priming.
    Type of Medium: Online Resource
    ISSN: 2051-1426
    Language: English
    Publisher: BMJ
    Publication Date: 2022
    detail.hit.zdb_id: 2719863-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages