Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers Media SA  (13)
  • 1
    In: Frontiers in Aging Neuroscience, Frontiers Media SA, Vol. 14 ( 2022-9-7)
    Abstract: Freezing of gait (FOG) is a disabling gait disorder common in advanced stage of Parkinson’s disease (PD). The gait performance of PD-FOG patients is closely linked with visual processing. Here, we aimed to investigate the structural and functional change of visual network in PD-FOG patients. Seventy-eight PD patients (25 with FOG, 53 without FOG) and 29 healthy controls (HCs) were included. All the participants underwent structural 3D T1-weighted magnetic resonance imaging (MRI) and resting state functional MRI scan. Our results demonstrated a significant decrease of right superior occipital gyrus gray matter density in PD-FOG relative to non-FOG (NFOG) patients and healthy controls (PD-FOG vs. PD-NFOG: 0.33 ± 0.04 vs. 0.37 ± 0.05, p = 0.005; PD-FOG vs. HC: 0.37 ± 0.05 vs. 0.39 ± 0.06, p = 0.002). Functional MRI revealed a significant decrease of connectivity between right superior occipital gyrus and right paracentral lobule in PD-FOG compared to PD-NFOG ( p = 0.045). In addition, the connectivity strength was positively correlated with gray matter density of right superior occipital gyrus ( r = 0.471, p = 0.027) and negatively associated with freezing of gait questionnaire (FOGQ) score ( r = -0.562, p = 0.004). Our study suggests that the structural and functional impairment of visual-motor network might underlie the neural mechanism of FOG in PD.
    Type of Medium: Online Resource
    ISSN: 1663-4365
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2558898-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Marine Science Vol. 9 ( 2022-7-22)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 9 ( 2022-7-22)
    Abstract: The relationship between Cd and soil phosphatase activity has been given some concerns due to serious soil Cd contamination. However, the effects of high-risk Cd pollution on the soil phosphorus mineralization process are still kept unclear in reclaimed coastal wetlands. Here, we investigated the impacts of Cd additions at three levels on phosphorus mineralization and phosphatase activities in reclaimed coastal wetland soils with different reclamation ages (e.g., 100-year, 40-year, and 10-year) in the Pearl River Estuary by a 40-day laboratory incubation experiment. The results showed that lower soil phosphatase activity was observed in the reclaimed wetlands with longer reclamation age, which led to the lower increase in cumulative net phosphorus mineralization and Occluded P. High Cd exposure facilitated the phosphatase activities and phosphorus mineralization through the promotion of Occluded P and Al/Fe-P contents in the 100-year and 10-year reclaimed wetland soils, respectively. The addition of the low-dose of Cd to the soil inhibited phosphorus mineralization in the middle of incubation in 40-year reclaimed wetland soils, while the high-dose Cd addition had little effect. The findings of this work indicate that the older reclaimed wetlands might have lower phosphorus mineralization potentials, while higher Cd pollution might lead to soil phosphorus loss by improving phosphorus mineralization in reclaimed coastal wetlands.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2757748-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Frontiers in Oncology, Frontiers Media SA, Vol. 12 ( 2022-2-23)
    Abstract: Primary central nervous system lymphoma (PCNSL) remains a disease with poor outcome and high recurrence rate. We retrospectively analyzed the clinical data of 243 immunocompetent patients with PCNSL in Beijing Tiantan Hospital. The median age of PCNSL patients was 57 years (range 10-95 years). For induction therapy, 94.7% of patients received high-dose methotrexate (HD-MTX) containing regimens, and 59.3% received rituximab, which increased over time. The overall response rate was 72.8%, with 58.8% achieving complete response. With a median follow-up of 27.0 months (95% confidence interval 23.6-30.4), the median progression-free survival (PFS) time was 14.0 months (95% CI 9.45-18.55), and the 2-year PFS rate was 33.2%. The median overall survival (OS) was not reached (NR), with an estimated overall survival rate at 4 years of 61.6%. Among 95 patients who completed sequential consolidation chemotherapy with either pemetrexed or etoposide plus cytarabine, the median PFS was 28 months (95% CI 17.11-38.89), and the estimated overall survival at 4 years was 78.7%. In conclusion, HD-MTX based induction chemotherapy with non-myeloablative sequential consolidation chemotherapy is an alternative feasible treatment option.
    Type of Medium: Online Resource
    ISSN: 2234-943X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2649216-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Frontiers in Microbiology, Frontiers Media SA, Vol. 13 ( 2022-12-6)
    Abstract: Antibiotics are ubiquitous pollutants and widely found in aquatic ecosystems, which of rhizosphere sediment and rhizosphere bacterial communities had certain correlation. However, the response of bacterial communities in Phragmites australis rhizosphere and non-rhizosphere sediments to antibiotics stress is still poorly understood. Methods To address this knowledge gap, the samples of rhizosphere (R) and non-rhizosphere (NR) sediments of P . australis were collected to investigate the differences of bacterial communities under the influence of antibiotics and key bacterial species and dominate environmental factors in Baiyangdian (BYD) Lake. Results The results showed that the contents of norfloxacin (NOR), ciprofloxacin (CIP) and total antibiotics in rhizosphere sediments were significantly higher than that in non-rhizosphere sediments, meanwhile, bacterial communities in non-rhizosphere sediments had significantly higher diversity (Sobs, Shannon, Simpsoneven and PD) than those in rhizosphere sediments. Furthermore, total antibiotics and CIP were found to be the most important factors in bacterial diversity. The majority of the phyla in rhizosphere sediments were Firmicutes , Proteobacteria and Campilobacterota , while Proteobacteria , Chloroflexi was the most abundant phyla followed by Bacteroidota , Actinobacteriota in non-rhizosphere sediments. The dominate factors of shaping the bacterial communities in rhizosphere were total antibiotics, pH, sediment organic matter (SOM), and NH 4 -N, while dissolved organic carbon (DOC), NO 3 -N, pH, and water contents (WC) in non-rhizosphere sediments. Discussion It is suggested that antibiotics may have a substantial effect on bacterial communities in P . australis rhizosphere sediment, which showed potential risk for ARGs selection pressure and dissemination in shallow lake ecosystems.
    Type of Medium: Online Resource
    ISSN: 1664-302X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2587354-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Frontiers in Ecology and Evolution, Frontiers Media SA, Vol. 10 ( 2022-3-21)
    Abstract: The depositional flux of coastal wetlands and the deposition rate of biogenic elements greatly affect the carbon sink storage. Ecological stoichiometry is an important ecological indicator, which can simply and intuitively indicate the biogeochemical cycle process of the region. This study investigated the soil deposition flux, stocks, and ecological stoichiometric ratios of C, N, P, and S under different water and salt conditions based on 137 Cs dating technology in the Yellow River Delta (YRD) of China. The results showed that the deposition fluxes were 0.38 cm/year for PV wetlands, 1.08 cm/yr for PA wetlands, and 1.06 cm/yr for SS wetlands. Similarly, PA wetlands showed higher deposition fluxes of C, N, and S compared with SS and PV wetlands. PA wetlands had higher stocks of C (5.86 kg/m 2 ), N (0.36 kg/m 2 ) and S (0.36 kg/m 2 ) in the top 1-m soil layer compared with PV and SS wetlands. However, the highest deposition rate of P (9.82 g/yr/m 2 ) was observed in SS wetlands among the three wetlands. Three accumulative hotspots of C, N, and S in soil profiles of PA and SS wetlands were observed at soil depths of 0–10, 40–60, and 90–100 cm, whereas one accumulative hotspot of P was at the soil depth of 10–12 cm in SS wetlands and 80–82 cm in PA wetlands. PV wetlands showed higher accumulations of C, P, and S in the top 10 cm soil layer and N at the soil depth of 90–100 cm. The higher top concentration factors in these three wetlands indicated that the dominant input of plant residues was the main reason. The ratios of C/N and C/N/P of each sampling site were higher in the surface soils and decreased with depth. The ratios of C/P and N/P were larger in the surface layer (0–20 cm), the middle layer (40–60 cm), and the deep layer (90–100 cm). The ratios of N/P and C/N/P were relatively lower, indicating that these studied wetlands were N-limited ecosystems. The results implied that the coastal wetlands in the YRD have huge storage potential of biogenic elements as blue carbon ecosystems.
    Type of Medium: Online Resource
    ISSN: 2296-701X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2745634-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Bioengineering and Biotechnology Vol. 10 ( 2022-6-27)
    In: Frontiers in Bioengineering and Biotechnology, Frontiers Media SA, Vol. 10 ( 2022-6-27)
    Abstract: Limited load capacity is the bottleneck for the practical application of mobile multi-joint legged robots. And improving the efficiency of the drive system is a key factor in improving the load capacity. To improve the efficiency of mobile robots, in this paper, a new kind of actuator that imitates the driving mechanism of human muscles is innovatively designed and validated through experiments. The proposed actuator consists of a single power source and multiple plunger pistons, and imitates the configuration of a human muscle, to improve the efficiency and load capacities. The design proposed here represents a new class of driving methods. The actuator selects the most appropriate combination of the effective areas of plunger pistons like the human muscles, to ensure that the maximal output force aligns with the load force. To validate that the new actuator can improve the efficiency of hydraulic systems of mobile robots, a robotic arm incorporating a prototype of the new actuator was designed. The proposed system was validated through a series of experiments. The experiments show that the bionic actuator can adjust the flow rate of the system input by adjusting the number and size of the motion units involved in the work, and with the change in load force, it changes the output force by recruiting different motion units, which indicates good controllability. The results reported herein reveal that the application of bionics to the design of robotic actuator can significantly improve the efficiency and overall performance of the robots, and this biomimetic approach can be applied to a variety of robots.
    Type of Medium: Online Resource
    ISSN: 2296-4185
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2719493-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Marine Science Vol. 9 ( 2022-2-10)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 9 ( 2022-2-10)
    Abstract: While nutrient enrichment and herbivory have been well recognized as the main driving factors of seagrass meadow fragmentation and degradation, there is limited understanding of how their relative importance shifts across large spatial scales where environmental factors such as turbidity can vary. In this study, a field control experiment was conducted in two Zostera japonica meadows distributed on the two banks of the Yellow River Estuary with different turbidity, to investigate the combined effects of nutrient enrichment and herbivory on seagrass and macroalgae. Our results showed that turbidity had the mediating force of shifting the relative importance of nutrient enrichment and herbivory to seagrass and macroalgae. While herbivory played a vital role in maintaining the balance between the two primary producers in a turbid environment, nutrient enrichment tended to offset herbivory-induced biomass loss by promoting seagrass growth in a less turbid system. Additionally, two potential mechanisms that might regulate the responses of seagrasses and macroalgae to nutrient enrichment and herbivory under different turbidity are proposed. On the one hand, turbidity might mediate the feeding preference of herbivores. On the other hand, nutrient enrichment favors the growth of opportunistic macroalgae over seagrass in turbid systems. Our study emphasizes the mediating force of turbidity on seagrass ecosystems, and provides references for the protection and restoration of seagrass meadows under multiple environmental stressors, and prompts further studies on the feedback between sediment dynamics and seagrass meadows in the context of ecogeomorphology.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2757748-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Marine Science Vol. 9 ( 2022-10-4)
    In: Frontiers in Marine Science, Frontiers Media SA, Vol. 9 ( 2022-10-4)
    Abstract: Burrowing crabs are widely distributed and have large populations in estuarine wetlands. Crab excavation can have potentially significant bioturbation effects on the vertical structure of sediments, and the processes of nutrients deposition and mineralization. However, the effects of crab micro activities on the geochemical cycling processes of the whole estuarine ecosystems are not clear, specifically the contributions of burrowing crabs to sediment and nutrients turnover in coastal ecosystems. Due to the lack of knowledge on crab burrowing behavior and borrow morphology, it is difficult to accurately estimate the excavation and turnover volumes of crabs. Therefore, this study examined the bioturbation activity of the crab Helice tientsinensis in western Pacific estuary ecosystems by analyzing their burrow morphology and local sediment properties. The common burrow shapes of Helice tientsinensis were J- and Y-shaped burrows. Burrow morphological characteristics such as total burrow depth, curve burrow length, burrow volume, and opening diameter significantly differed among tidal zones. Crab carapace size, water depth, soil hardness, and bulk density were the main factors driving burrow morphology. Sediment excavation by crabs was ~50 times greater than the deposition of sediment into crab burrows. The net transported amounts of sediment (31.66–33.18 g·d -1 ·m -2 ) and nutrients (total nitrogen: 0.075–0.090 g·d -1 ·m -2 , total carbon: 3.96–4.55 g·d -1 ·m -2 , and organic matter: 0.44–0.77 g·d -1 ·m -2 ) were mainly from the belowground sediment to the surface. These results highlighted the important role of crabs in sediment and nutrients cycling within coastal estuary ecosystems.
    Type of Medium: Online Resource
    ISSN: 2296-7745
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2757748-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Veterinary Science Vol. 9 ( 2022-6-28)
    In: Frontiers in Veterinary Science, Frontiers Media SA, Vol. 9 ( 2022-6-28)
    Abstract: The yak ( Bos grunniens ) is closely related to common cows ( Bos taurus ), but is clearly a distinct species. Yaks are of substantial importance to food and leather production in certain high-altitude regions of Asia. The animal is increasing elsewhere as well, mainly because of the perceived health benefits of its milk. Like all ruminants, the animal harbors a complex community of microbial cells in its gut, crucial for its physiology. Despite yaks being important domestic animals, the composition of its gut microbiota and how the composition is guided by its specific high-altitude environment remains largely uncategorized. Hence, online databases (Embase, Medline ALL, Web of Science Core Collection, Cochrane Central Register of Controlled Trials, and Google Scholar) were searched for articles on yak intestinal microbiota. The pooled taxonomic abundance was compared between regions, sexes, different age groups, and feeding patterns. The gut microbiota distribution across different yak intestinal segments was established through pooled average taxonomic abundance. A total of 34 studies met the inclusion criteria and yielded information on 982 unique yak gut microbiota samples. An analysis of overall pooled microbiota revealed a segmented microbial community composition of the yak gut. Yak rumen microbiota was significantly influenced by difference in region, sex, and feeding patterns, the latter factor being dominant in this respect. Yak microbiome is shaped by the feeding strategy and provides an obvious avenue for improving health and productivity of the animal. More generally, the current segmental description of physiological gut microbiome provides insight into how the microbiology of this animal has adapted itself to help comping yaks with its high-altitude habitat.
    Type of Medium: Online Resource
    ISSN: 2297-1769
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2834243-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Frontiers Media SA ; 2023
    In:  Frontiers in Microbiology Vol. 13 ( 2023-1-11)
    In: Frontiers in Microbiology, Frontiers Media SA, Vol. 13 ( 2023-1-11)
    Abstract: As the largest shallow freshwater lake in the North China Plain, Baiyangdian lake is essential for maintaining ecosystem functioning in this highly populated region. Sediments are considered to record the impacts of human activities. Methods The abundance, diversity and metabolic pathways of microbial communities in sediments were studied by metagenomic approach to reveal patterns and mechanism of C, N, P and S cycling under the threat of lake eutrophication. Results Many genera, with plural genes encoding key enzymes involved in genes, belonging to Proteobacteria and Actinobacteria which were the most main phylum in bacterial community of Baiyangdian sediment were involved in C, N, S, P cycling processes, such as Nocardioides (Actinobacteria), Thiobacillus , Nitrosomonas , Rhodoplanes and Sulfuricaulis (Proteobacteria).For instance, the abundance of Nocardioides were positively correlated to TN, EC, SOC and N/P ratio in pathways of phytase, regulation of phosphate starvation, dissimilatory sulfate reduction and oxidation, assimilatory sulfate reduction, assimilatory nitrate reduction and reductive tricarboxylic acid (rTCA) cycle. Many key genes in C, N, P, S cycling were closely related to the reductive citrate cycle. A complete while weaker sulfur cycle between SO 4 2− and HS − might occur in Baiyangdian lake sediments compared to C fixation and N cycling. In addition, dissimilatory nitrate reduction to ammonia was determined to co-occur with denitrification. Methanogenesis was the main pathway of methane metabolism and the reductive citrate cycle was accounted for the highest proportion of C fixation processes. The abundance of pathways of assimilatory nitrate reduction, denitrification and dissimilatory nitrate reduction of nitrogen cycling in sediments with higher TN content was higher than those with lower TN content. Besides, Nocardioides with plural genes encoding key enzymes involved in nasAB and nirBD gene were involved in these pathways. Discussion Nocardioides involved in the processes of assimilatory nitrate reduction, denitrification and dissimilatory nitrate reduction of nitrogen cycling may have important effects on nitrogen transformation.
    Type of Medium: Online Resource
    ISSN: 1664-302X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2587354-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages