Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (29)
  • 1
    In: Animals, MDPI AG, Vol. 10, No. 2 ( 2020-02-12), p. 290-
    Abstract: Early weaning stress impairs the development of gastrointestinal barrier function, causing immune system dysfunctions, reduction in feed intake, and growth retardation. Autophagy was hypothesized to be a key underlying cellular process in these dysfunctions. We conjectured that rapamycin (RAPA) and chloroquine (CQ), as two autophagy-modifying agents, regulate the autophagy process and may produce deleterious or beneficial effects on intestinal health and growth. To explore the effect of autophagy on early weaning stress in piglets, 18 early-weaned piglets were assigned to three treatments (each treatment of six piglets) and treated with an equal volume of RAPA, CQ, or saline. The degree of autophagy and serum concentrations of immunoglobulins and cytokines, as well as intestinal morphology and tight junction protein expression, were evaluated. Compared with the control treatment, RAPA-treated piglets exhibited activated autophagy and had decreased final body weight (BW) and average daily gain (ADG) (p 〈 0.05), impaired intestinal morphology and tight junction function, and higher inflammatory responses. The CQ-treated piglets showed higher final BW, ADG, jejuna and ileal villus height, and lower autophagy and inflammation, compared with control piglets (p 〈 0.05). Throughout the experiment, CQ treatment was beneficial to alleviate early weaning stress and intestinal and immune system dysfunction.
    Type of Medium: Online Resource
    ISSN: 2076-2615
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2606558-7
    SSG: 23
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Pathogens, MDPI AG, Vol. 10, No. 12 ( 2021-11-29), p. 1554-
    Abstract: Hefei, Anhui province, is one of the cities in the Yangtze River Delta, where many people migrate to Jiangsu, Zhejiang and Shanghai. High migration also contributes to the HIV epidemic. This study explored the HIV prevalence in Hefei to provide a reference for other provinces and assist in the prevention and control of HIV in China. A total of 816 newly reported people with HIV in Hefei from 2017 to 2020 were recruited as subjects. HIV subtypes were identified by a phylogenetic tree. The most prevalent subtypes were CRF07_BC (41.4%), CRF01_AE (38.1%) and CRF55_01B (6.3%). Molecular networks were inferred using HIV-TRACE. The largest and most active transmission cluster was CRF55_01B in Hefei’s network. A Chinese national database (50,798 sequences) was also subjected to molecular network analysis to study the relationship between patients in Hefei and other provinces. CRF55_01B and CRF07_BC-N had higher clustered and interprovincial transmission rates in the national molecular network. People with HIV in Hefei mainly transmitted the disease within the province. Finally, we displayed the epidemic trend of HIV in Hefei in recent years with the dynamic change of effective reproductive number (Re). The weighted overall Re increased rapidly from 2012 to 2015, with a peak value of 3.20 (95% BCI, 2.18–3.85). After 2015, Re began to decline and remained stable at around 1.80. In addition, the Re of CRF55_01B was calculated to be between 2.0 and 4.0 in 2018 and 2019. More attention needs to be paid to the rapid spread of CRF55_01B and CRF07_BC-N strains among people with HIV and the high Re in Hefei. These data provide necessary support to guide the targeted prevention and control of HIV.
    Type of Medium: Online Resource
    ISSN: 2076-0817
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2695572-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Mathematics, MDPI AG, Vol. 9, No. 21 ( 2021-11-08), p. 2835-
    Abstract: 3D printing, regarded as the most popular additive manufacturing technology, is finding many applications in various industrial sectors. Along with the increasing number of its industrial applications, reducing its material consumption and increasing the strength of 3D printed objects have become an important topic. In this paper, we introduce unidirectionally and bidirectionally stiffened structures into 3D printing to increase the strength and stiffness of 3D printed objects and reduce their material consumption. To maximize the advantages of such stiffened structures, we investigated finite element analysis, especially for general cases of stiffeners in arbitrary positions and directions, and performed optimization design to minimize the total volume of stiffened structures. Many examples are presented to demonstrate the effectiveness of the proposed finite element analysis and optimization design as well as significant reductions in the material costs and stresses in 3D printed objects stiffened with unidirectional and bidirectional stiffeners.
    Type of Medium: Online Resource
    ISSN: 2227-7390
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2704244-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Molecules Vol. 28, No. 15 ( 2023-08-04), p. 5877-
    In: Molecules, MDPI AG, Vol. 28, No. 15 ( 2023-08-04), p. 5877-
    Abstract: The gas chromatography–ion mobility spectrometry (GC-IMS) method is a new technology for detecting volatile organic compounds. This study was carried out to evaluate the effects of volatile aroma compounds of Curcuma essential oils (EOs) after 60Co radiation by GC-IMS. Dosages of 0, 5, and 10 kGy of 60Co were used to analyze EOs of Curcuma after 60Co irradiation (named EZ-1, EZ-2, and EZ-3). The odor fingerprints of volatile organic compounds in different EOs of Curcuma samples were constructed by headspace solid-phase microextraction and GC-IMS after irradiation. The differences in odor fingerprints of EOs were compared by principal component analysis (PCA). A total of 92 compounds were detected and 65 compounds were identified, most of which were ketones, aldehydes, esters, and a small portion were furan compounds. It was found that the volatile matter content of 0 kGy and 5 kGy was closer, and the use of 10 kGy 60Co irradiation would have an unstable effect on the EOs. In summary, it is not advisable to use a higher dose when using 60Co irradiation for sterilization of Curcuma. Due to the small gradient of irradiation dose used in the experiment, the irradiation dose can be adjusted appropriately according to the required sterilization requirements during the production and storage process of Curcuma to obtain the best irradiation conditions. GC-IMS has the advantages of GC’s high separation capability and IMS’s fast response, high resolution, and high sensitivity, and the sample requires almost no pretreatment; it can be widely used in the analysis of traditional Chinese medicines containing volatile components. It is shown that irradiation technology has good application prospects in the sterilization of traditional Chinese medicines, but the changes in irradiation dose and chemical composition must be paid attention to.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2008644-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Nanomaterials, MDPI AG, Vol. 12, No. 18 ( 2022-09-11), p. 3149-
    Abstract: The cathode buffer layer (CBL) plays a crucial role in organic solar cells (OSCs), and it has been challenging to obtain high-quality CBL by using simple and reliable processes. In this paper, the bilayer structure consisting of ZnO nanoparticles (NPs) and sol–gel SnO2 was prepared by the low-temperature ( 〈 100 °C) UV-ozone (UVO) sintering process and used as the robust CBL for ternary OSCs based on PTB7-Th:PCDTBT:PC70BM. The results show that the insertion of SnO2 can effectively fill the cracks and pores on the surface of the ZnO NP film, thereby improving the overall compactness and flatness of the CBL and reducing the defect density inside the CBL. Furthermore, the insertion of SnO2 slightly improves the transmittance of the CBL to photons with wavelengths in the range of 400–600 nm, and also increases the electron mobility of the CBL thus facilitating the extraction and transport of the electrons. Compared to the devices using UVO-ZnO and UVO-SnO2 CBLs, the devices with UVO-ZnO/SnO2 CBL exhibit exceptional performance advantages, the best power conversion efficiency (PCE) reaches 10.56%. More importantly, the stability of the devices with ZnO/SnO2 CBL is significantly improved, the device (PCE) still maintains 60% of the initial value after 30 days in air. The positive results show that the UVO-ZnO/SnO2 is an ideal CBL for OSCs, and due to the low-temperature process, it has great application potential in flexible OSCs.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662255-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Microorganisms, MDPI AG, Vol. 10, No. 4 ( 2022-03-31), p. 754-
    Abstract: Background: The gut microbiome is a large and complex organic assemblage with subtle and close relationships with the host. This symbiotic mechanism is important for the health and adaptability of the host to the environment. Compared with other ruminants, there are few studies on yak intestinal microbes. The study of the gut microbiota of the yak will help us better understand the correlation between the microbiota and the environmental adaptability of the host. In this study, we adapted 16S rDNA sequencing technology to investigate the diversity and composition of the intestinal microbial community in free-range yaks and captive yaks living on the Qinghai–Tibet Plateau (QTP). Results: Sequencing results showed that the intestinal microbial community diversity was significantly different between free-range yaks and captive yaks. Firmicutes and Bacteroidetes were the dominant bacteria in both free-range and captive yaks. However, there were differences between the microbes of the two analyzed feeding styles in different classification levels. Compared with the captive type, free-range yaks had a higher abundance of Ruminococcaceae, Eubacteriaceae, Desulfovibrionaceae, Elusimicrobium, and Oscillibacter, while the abundance of Succinivibrionaceae, Clostridiales, Lachnospiraceae, Prevotellaceae, Roseburia, and Barnesiella was relatively low. The feeding method may be the key factor for the formation of intestinal flora differences in yaks, while altitude did not significantly affect Qinghai yak. Conclusions: In this study, we used 16S rDNA sequencing technology to investigate the composition of intestinal flora in free-range and captive yaks living on the QTP. The exploration of dietary factors can provide a theoretical basis for scientifically and rationally breeding yaks and provides a new direction for the development of prebiotics and microecological agents.
    Type of Medium: Online Resource
    ISSN: 2076-2607
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2720891-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Electronics Vol. 11, No. 14 ( 2022-07-08), p. 2143-
    In: Electronics, MDPI AG, Vol. 11, No. 14 ( 2022-07-08), p. 2143-
    Abstract: The recent advances in unmanned aerial vehicles (UAVs) enormously improve their utility and expand their application scope. The UAV and swarm implementation further prevail in Smart City practices with the aid of edge computing and urban Internet of Things. The lead–follow formation in UAV swarm is an important organization means and has been adopted in diverse exercises, for its efficiency and ease of control. However, the reliability of centralization makes the entire swarm system in risk of collapse and instability, if a fatal fault incident happens in the leader. The motivation is to build a mechanism helping the distributed swarm recover from possible failures. Existing ways include assigning definite backups, temporary clustering and traversing to select a new leader are traditional ways that lack flexibility and adaptability. In this article, we propose a voting-based leader election scheme inspired by the Raft method in distributed computation consensus to solve the problem. We further discuss the impact of communication conditions imposed on the decentralized voting process by implementing a network resource pool. To dynamically evaluate UAV individuals, we outline measurement design principles and provide a realizable calculation example. Lastly but not least, empirical simulation results manifest better performance than the Raft-based method. Our voting-based approach exhibits advantages and is a promising way for quick regrouping and fault recovery in lead–follow swarms.
    Type of Medium: Online Resource
    ISSN: 2079-9292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662127-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Energies, MDPI AG, Vol. 15, No. 15 ( 2022-07-22), p. 5333-
    Abstract: Considering the battery-failure-induced catastrophic events reported frequently, the early fault warning of batteries is essential to the safety of electric vehicles (EVs). Motivated by this, a novel data-driven method for early-stage battery-fault warning is proposed in this paper by the fusion of the short-text mining and the grey correlation. In particular, the short-text mining approach is exploited to identify the fault information recorded in the maintenance and service documents and further to analyze the categories of battery faults in EVs statistically. The grey correlation algorithm is employed to build the relevance between the vehicle states and typical battery faults, which contributes to extracting the key features of corresponding failures. A key fault-prediction model of electric buses based on big data is then established on the key feature variables. Different selections of kernel functions and hyperparameters are scrutinized to optimize the performance of warning. The proposed method is validated with real-world data acquired from electric buses in operation. Results suggest that the constructed prediction model can effectively predict the faults and carry out the desired early fault warning.
    Type of Medium: Online Resource
    ISSN: 1996-1073
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2437446-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancers, MDPI AG, Vol. 13, No. 6 ( 2021-03-12), p. 1250-
    Abstract: The novel coronavirus SARS-CoV-2 is the causative agent of the COVID-19 pandemic. Severely symptomatic COVID-19 is associated with lung inflammation, pneumonia, and respiratory failure, thereby raising concerns of elevated risk of COVID-19-associated mortality among lung cancer patients. Angiotensin-converting enzyme 2 (ACE2) is the major receptor for SARS-CoV-2 entry into lung cells. The single-cell expression landscape of ACE2 and other SARS-CoV-2-related genes in pulmonary tissues of lung cancer patients remains unknown. We sought to delineate single-cell expression profiles of ACE2 and other SARS-CoV-2-related genes in pulmonary tissues of lung adenocarcinoma (LUAD) patients. We examined the expression levels and cellular distribution of ACE2 and SARS-CoV-2-priming proteases TMPRSS2 and TMPRSS4 in 5 LUADs and 14 matched normal tissues by single-cell RNA-sequencing (scRNA-seq) analysis. scRNA-seq of 186,916 cells revealed epithelial-specific expression of ACE2, TMPRSS2, and TMPRSS4. Analysis of 70,030 LUAD- and normal-derived epithelial cells showed that ACE2 levels were highest in normal alveolar type 2 (AT2) cells and that TMPRSS2 was expressed in 65% of normal AT2 cells. Conversely, the expression of TMPRSS4 was highest and most frequently detected (75%) in lung cells with malignant features. ACE2-positive cells co-expressed genes implicated in lung pathobiology, including COPD-associated HHIP, and the scavengers CD36 and DMBT1. Notably, the viral scavenger DMBT1 was significantly positively correlated with ACE2 expression in AT2 cells. We describe normal and tumor lung epithelial populations that express SARS-CoV-2 receptor and proteases, as well as major host defense genes, thus comprising potential treatment targets for COVID-19 particularly among lung cancer patients.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2527080-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Remote Sensing, MDPI AG, Vol. 14, No. 9 ( 2022-04-27), p. 2094-
    Abstract: Grassland classification is crucial for grassland management. One commonly used method utilizes remote sensing vegetation indices (VIs) to map grassland classes at various scales. However, most grassland classifications were conducted as case studies in a small area due to lack of field data sources. At a small scale, classification is reliable; however, great uncertainty emerges when extended to other areas. In this study, large amounts of field observations (more than 30,000 aerial photos) were obtained using unmanned aerial vehicle photography in Inner Mongolia, China, during the peak period of grassland growth in 2018 and 2019. Then, four machine learning classification algorithms were constructed based on characteristic indices of MODIS NDVI in the growing season to map grassland classes of Inner Mongolia. Finally, the spatial distribution and temporal variation of temperate grassland classes were analyzed. Results showed that: (1) Among all characteristic indices, the maximum, average, and sum of MODIS NDVI from July to September during 2015 to 2019 greatly affected grassland classification. (2) The random forest method exhibited the best performance with overall accuracy and kappa coefficient being 72.17% and 0.62, respectively. (3) Compared with the grassland class mapped in the 1980s, 30.98% of grassland classes have been transformed. Our study provides a technological basis for effective and accurate classification of the temperate steppe class and a theoretical foundation for sustainable development and restoration of the temperate steppe ecosystem.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2513863-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages