Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: International Journal of Environmental Research and Public Health, MDPI AG, Vol. 18, No. 21 ( 2021-10-28), p. 11330-
    Abstract: In this digital era, young children spend a considerable amount of time looking at telephone, tablet, computer and television screens. However, preventative eye health behavior education could help avoid and relieve asthenopia. The effects of parental influence on their children’s eye health behavior through the preschool eye health education intervention program were examined. The Health Belief Model was used to develop parental involvement strategy and eye health curriculum. The study was conducted in a large public preschool with five branches in Beijing, China. A total of 248 parent–child pairs participated in the baseline and follow-up surveys, of which 129 were in the intervention group and 119 were in the comparison group. The generalized estimating equation analysis results indicated that parental involvement in preschool-based eye health intervention on screen uses had positive influence on parents’ eye health knowledge, cues to action, and parenting efficacy. The intervention program also had positive effects on the increasing level of children’s eye health knowledge, beliefs, cues to action, self-efficacy, and behaviors. The results supported the implementation of a preschool-based eye health intervention program with parental involvement, which could potentially enhance children’s and parents’ eye health beliefs and practices.
    Type of Medium: Online Resource
    ISSN: 1660-4601
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2175195-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Processes, MDPI AG, Vol. 10, No. 6 ( 2022-06-12), p. 1177-
    Abstract: Propylene Glycol Alginate Sodium Sulfate (PSS) is widely produced and used in medicine as a marine drug for treating hyperlipidemia. During the sulfonation synthesis of PSS, the sulfonation of chlorosulfonic acid is exothermic. At high temperatures, the process can easily produce a large amount of ammonium sulfate. Ammonium sulfate adheres to PSS in crystal and participates in the sulfonation reaction. In this study, the sulfonation process of commercial PSS was reproduced in the laboratory using chlorosulfonic acid and formamide. We used differential scanning calorimetry and thermogravimetric analyzer to examine the thermal stability of PSS, and we used both differential and integral conversional methods to determine the appropriate thermokinetic models for this substance. We also established an autocatalytic model to study the conversion limit time and the maximum rate time of this substance. After calculation, the activation energy of this substance is no more than 60 kJ/mol, and it has other exothermic performances at different heating rates. The results help to optimize the sulfonation process of PSS and analyze the thermal risk of PSS with ammonium sulfate.
    Type of Medium: Online Resource
    ISSN: 2227-9717
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2720994-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    MDPI AG ; 2017
    In:  Atmosphere Vol. 8, No. 1 ( 2017-01-21), p. 23-
    In: Atmosphere, MDPI AG, Vol. 8, No. 1 ( 2017-01-21), p. 23-
    Abstract: This study numerically investigates the effects of a moving crane and airflow on contaminant removal efficiency of various reticle box coverage sequences in a stocker. The analyzed characteristics of flow patterns are used to protect the reticles from contaminants, without altering their internal component configuration in conjunction with the aim of cost-savings. A finite volume method was applied in a numerical analysis using computational fluid dynamics software, ANSYS Fluent. To simulate actual operating conditions, the effects of inlet velocity of clean air and crane movement speed on contaminant removal efficiency (CRE) are considered, and a particle release technique is analyzed to determine contaminant concentrations in the stocker. The results show that a higher airflow rate leads to a better contaminant removal efficiency in the stocker. For the various arrangements of reticle boxes in the stocker, the symmetric coverage sequence provides the most satisfactory contaminant removal rate. An optimal inlet airflow velocity of 0.12 m/s is obtained based on the CRE distribution. In addition, the airflow distributions indicate that a vortex is induced by the air flow through a solid boundary; thus, a higher inlet airflow velocity results in a small vortex that also benefits the CRE. The results also demonstrate that a high crane movement speed causes a large reverse flow region at the bottom that also induces a long wake behind the crane, into which particles are easily drawn.
    Type of Medium: Online Resource
    ISSN: 2073-4433
    Language: English
    Publisher: MDPI AG
    Publication Date: 2017
    detail.hit.zdb_id: 2605928-9
    SSG: 23
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Nutrients, MDPI AG, Vol. 13, No. 8 ( 2021-08-16), p. 2809-
    Abstract: Lemon (Citrus limon) has antioxidant, immunoregulatory, and blood lipid-lowering properties. This study aimed to determine the effect of the lemon fermented product (LFP) which is lemon fermented with Lactobacillus OPC1 to prevent obesity. The inhibition of lipid accumulation in 3T3-L1 adipocytes is examined using a Wistar rat model fed a high-fat diet to verify the anti-obesity efficacy and mechanism of LFP. Here, it was observed that LFP reduced cell proliferation and inhibited the lipid accumulation (8.3%) of 3T3-L1 adipocytes. Additionally, LFP reduced body weight (9.7%) and fat tissue weight (25.7%) of rats; reduced serum TG (17.0%), FFA (17.9%), glucose (29.3%) and ketone body (6.8%); and increased serum HDL-C (17.6%) and lipase activity (17.8%). LFP regulated the mRNA expression of genes related to lipid metabolism (PPARγ, C/EBPα, SREBP-1c, HSL, ATGL, FAS, and AMPK). Therefore, LFP reduces body weight and lipid accumulation by regulating the mRNA expression of genes related to lipid metabolism. Overall, our results implicate LFP as a potential dietary supplement for the prevention of obesity.
    Type of Medium: Online Resource
    ISSN: 2072-6643
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2518386-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Micromachines, MDPI AG, Vol. 13, No. 10 ( 2022-09-27), p. 1605-
    Abstract: Ablation is a clinical cancer treatment, but some demands are still unsatisfied, such as electromagnetic interferences amongst multiple ablation needles during large tumour treatments. This work proposes a physical synthesis for composite particles of biocompatible iron oxide particles and liquid metal gallium (Ga) with different alternative-current (AC)-magnetic-field-induced heat mechanisms of magnetic particle hyperthermia and superior resistance heat. By some imaging, X-ray diffraction, and vibrating sample magnetometer, utilised composite particles were clearly identified as the cluster of few iron oxides using the small weight ratio of high-viscosity liquid metal Ga as conjugation materials without surfactants for physical targeting of limited fluidity. Hence, well penetration inside the tissue and the promotion rate of heat generation to fit the ablation requirement of at least 60 °C in a few seconds are achieved. For the injection and the post-injection magnetic ablations, the volume variation ratios of mice dorsal tumours on Day 12 were expressed at around one without tumour growth. Its future powerful potentiality is expected through a percutaneous injection.
    Type of Medium: Online Resource
    ISSN: 2072-666X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2620864-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Brain Sciences, MDPI AG, Vol. 12, No. 8 ( 2022-07-30), p. 1012-
    Abstract: Objective Glioblastoma (GBM), a type of malignant glioma, is the most aggressive type of brain tumor and is associated with high mortality. Hexose-6-phosphate dehydrogenase (H6PD) has been detected in multiple tumors and is involved in tumor initiation and progression. However, the specific role and mechanism of H6PD in GBM remain unclear. Methods We performed pan-cancer analysis of expression and prognosis of H6PD in GBM using the Genotype-Tissue Expression Project (GTEx) and The Cancer Genome Atlas (TCGA). Subsequently, noncoding RNAs regulating H6PD expression were obtained by comprehensive analysis, including gene expression, prognosis, correlation, and immune infiltration. Finally, tumor immune infiltrates related to H6PD and survival were performed. Results Higher expression of H6PD was statistically significantly associated with an unfavorable outcome in GBM. Downregulation of hsa-miR-124-3p and hsa-miR-516b-5p in GBM was detected from GSE90603. Subsequently, OSMR-AS1 was observed in the regulation of H6PD via hsa-miR-516b-5p. Moreover, higher H6PD expression significantly correlated with immune infiltration of dendritic cells, immune checkpoint expression, and biomarkers of dendritic cells. Conclusions The OSMR-AS1/ miR-516b-5p axis was identified as the highest-potential upstream ncRNA-related pathway of H6PD in GBM. Furthermore, the present findings demonstrated that H6PD blockading might possess antitumor roles via regulating dendritic cell infiltration and immune checkpoint expression.
    Type of Medium: Online Resource
    ISSN: 2076-3425
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2651993-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Coatings, MDPI AG, Vol. 11, No. 6 ( 2021-06-10), p. 693-
    Abstract: In this paper, the microstructure analysis and performance research of dual laser beam welded 2060-T8/2099-T83 aluminum–lithium alloys were carried out. First, the macroscopic morphology and microstructure characteristics of T-joint aluminum–lithium alloys under different welding conditions were observed. Then the effect of welding parameters and pore defects on tensile and fatigue properties of the weld were carried out and the experimental results were analyzed. It was found that the weld heat input has a significant influence on the penetration of the welded aluminum–lithium alloys joint. When the laser power is too high, the weld will absorb more laser energy and the increase in the evaporation of magnesium will further increase the weld penetration. When the penetration depth increases, the transverse tensile strength tends to decrease. There is no obvious rule for the effect of pore defects on the tensile strength of the weld. At the same time, the heat input of the weld is inversely proportional to the porosity. When the weld heat input increases from 19.41 to 23.33 kJ/m, the porosity decreases from 5.35% to 2.08%. During the fatigue test, it was confirmed that the existence of pore defects would reduce the fatigue life of the weld. In addition, from the analysis of the fatigue fracture morphology it can be found that when the porosity is low, the weld toe is the main source of fatigue cracks. The crack propagation zone shows a typical beach pattern and the final fracture of the base metal presents the characteristics of a brittle fracture. While, when the porosity is high, the crack source is mainly located at the pore defects. T-joint fractures from the inside of the weld and the fracture in the final fracture zone have obvious pore defects and dimples.
    Type of Medium: Online Resource
    ISSN: 2079-6412
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2662314-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Plants, MDPI AG, Vol. 11, No. 19 ( 2022-10-07), p. 2635-
    Abstract: Research on the flowering habit of rapeseed is important for the selection of varieties adapted to specific ecological environments. Here, quantitative trait loci (QTL) for the days-to-flowering trait were identified using a doubled haploid population of 178 lines derived from a cross between the winter type SGDH284 and the semi-winter type 158A. A linkage map encompassing 3268.01 cM was constructed using 2777 bin markers obtained from next-generation sequencing. The preliminary mapping results revealed 56 QTLs for the days to flowering in the six replicates in the three environments. Twelve consensus QTLs were identified by a QTL meta-analysis, two of which (cqDTF-C02 and cqDTF-C06) were designated as major QTLs. Based on the micro-collinearity of the target regions between B. napus and Arabidopsis, four genes possibly related to flowering time were identified in the cqDTF-C02 interval, and only one gene possibly related to flowering time was identified in the cqDTF-C06 interval. A tightly linked insertion–deletion marker for the cqFT-C02 locus was developed. These findings will aid the breeding of early maturing B. napus varieties.
    Type of Medium: Online Resource
    ISSN: 2223-7747
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704341-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Applied Sciences, MDPI AG, Vol. 12, No. 21 ( 2022-10-25), p. 10820-
    Abstract: Hardness testing is an essential test in the metal manufacturing industry, and Vickers hardness is one of the most widely used hardness measurements today. The computer-assisted Vickers hardness test requires manually generating indentations for measurement, but the process is tedious and the measured results may depend on the operator’s experience. In light of this, this paper proposes a data-driven approach based on convolutional neural networks to measure the Vickers hardness value directly from the image of the specimen to get rid of the aforementioned limitations. Multi-task learning is introduced in the proposed network to improve the accuracy of Vickers hardness measurement. The metal material used in this paper is medium-carbon chromium-molybdenum alloy steel (SCM 440), which is commonly utilized in automotive industries because of its corrosion resistance, high temperature, and tensile strength. However, the limited samples of SCM 440 and the tedious manual measurement procedure represent the main challenge to collect sufficient data for training and evaluation of the proposed methods. In this regard, this study introduces a new image mixing method to augment the dataset. The experimental results show that the mean absolute error between the Vickers hardness value output by the proposed network architecture can be 10.2 and the value can be further improved to 7.6 if the multi-task learning method is applied. Furthermore, the robustness of the proposed method is confirmed by evaluating the developed models with an additional 59 unseen images provided by specialists for testing, and the experimental results provide evidence to support the reliability and usability of the proposed methods.
    Type of Medium: Online Resource
    ISSN: 2076-3417
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704225-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 22, No. 19 ( 2021-10-08), p. 10870-
    Abstract: Lymphoid enhancer-binding factor 1 (LEF1) is a key transcription factor mediating the Wnt signaling pathway. LEF1 is a regulator that is closely associated with tumor malignancy and is usually upregulated in cancers, including colonic adenocarcinoma. The underlying molecular mechanisms of LEF1 regulation for colonic adenocarcinoma progression remain unknown. To explore it, the LEF1 expression in caco2 cells was inhibited using an shRNA approach. The results showed that downregulation of LEF1 inhibited the malignancy and motility associated microstructures, such as polymerization of F-actin, β-tubulin, and Lamin B1 in caco2 cells. LEF1 inhibition suppressed the expression of epithelial/endothelial-mesenchymal transition (EMT) relevant genes. Overall, the current results demonstrated that LEF1 plays a pivotal role in maintaining the malignancy of colonic adenocarcinoma by remodeling motility correlated microstructures and suppressing the expression of EMT-relevant genes. Our study provided evidence of the roles LEF1 played in colonic adenocarcinoma progression, and suggest LEF1 as a potential target for colonic adenocarcinoma therapy.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages