Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Cancers Vol. 14, No. 3 ( 2022-01-28), p. 679-
    In: Cancers, MDPI AG, Vol. 14, No. 3 ( 2022-01-28), p. 679-
    Abstract: Medulloblastoma is an embryonal pediatric brain tumor and can be divided into at least four molecularly defined groups. The category non-WNT/non-SHH medulloblastoma summarizes medulloblastoma groups 3 and 4 and is characterized by considerable genetic and clinical heterogeneity. New therapeutic strategies are needed to increase survival rates and to reduce treatment-related toxicity. We performed a noncomprehensive targeted review of the current clinical trial landscape and literature to summarize innovative treatment options for non-WNT/non-SHH medulloblastoma. A multitude of new drugs is currently evaluated in trials for which non-WNT/non-SHH patients are eligible, for instance immunotherapy, kinase inhibitors, and drugs targeting the epigenome. However, the majority of these trials is not restricted to medulloblastoma and lacks molecular classification. Whereas many new molecular targets have been identified in the last decade, which are currently tested in clinical trials, several challenges remain on the way to reach a new therapeutic strategy for non-WNT/non-SHH medulloblastoma. These include the severe lack of faithful preclinical models and predictive biomarkers, the question on how to stratify patients for clinical trials, and the relative lack of studies that recruit large, homogeneous patient collectives. Innovative trial designs and international collaboration will be a key to eventually overcome these obstacles.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527080-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Nanomaterials, MDPI AG, Vol. 10, No. 4 ( 2020-04-09), p. 711-
    Abstract: In two-dimensional materials research, oxidation is usually considered as a common source for the degradation of electronic and optoelectronic devices or even device failure. However, in some cases a controlled oxidation can open the possibility to widely tune the band structure of 2D materials. In particular, we demonstrate the controlled oxidation of titanium trisulfide (TiS3), a layered semicon-ductor that has attracted much attention recently thanks to its quasi-1D electronic and optoelectron-ic properties and its direct bandgap of 1.1 eV. Heating TiS3 in air above 300 °C gradually converts it into TiO2, a semiconductor with a wide bandgap of 3.2 eV with applications in photo-electrochemistry and catalysis. In this work, we investigate the controlled thermal oxidation of indi-vidual TiS3 nanoribbons and its influence on the optoelectronic properties of TiS3-based photodetec-tors. We observe a step-wise change in the cut-off wavelength from its pristine value ~1000 nm to 450 nm after subjecting the TiS3 devices to subsequent thermal treatment cycles. Ab-initio and many-body calculations confirm an increase in the bandgap of titanium oxysulfide (TiO2-xSx) when in-creasing the amount of oxygen and reducing the amount of sulfur.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2662255-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages