Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (1,103)
Type of Medium
Publisher
  • MDPI AG  (1,103)
Language
Years
  • 1
    In: Cells, MDPI AG, Vol. 10, No. 7 ( 2021-06-30), p. 1647-
    Abstract: Development of resistance to therapy in ovarian cancer is a major hinderance for therapeutic efficacy; however, new mechanisms of the resistance remain to be elucidated. NADPH oxidase 4 (NOX4) is responsible for higher NADPH activity to increase reactive oxygen species (ROS) production. In this study, we showed that higher levels of NOX4 were detected in a large portion of human ovarian cancer samples. To understand the molecular mechanism of the NOX4 upregulation, we showed that NOX4 expression was induced by HIF-1α and growth factor such as IGF-1. Furthermore, our results indicated that NOX4 played a pivotal role in chemotherapy and radiotherapy resistance in ovarian cancer cells. We also demonstrated that NOX4 knockdown increased sensitivity of targeted therapy and radiotherapy through decreased expression of HER3 (ERBB3) and NF-κB p65. Taken together, we identified a new HIF-1α/NOX4 signal pathway which induced drug and radiation resistance in ovarian cancer. The finding may provide a new option to overcome the therapeutic resistance of ovarian cancer in the future.
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2661518-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Nanomaterials Vol. 10, No. 9 ( 2020-08-21), p. 1640-
    In: Nanomaterials, MDPI AG, Vol. 10, No. 9 ( 2020-08-21), p. 1640-
    Abstract: An in situ high-pressure X-ray diffraction study was performed on Ag2S nanosheets, with an average lateral size of 29 nm and a relatively thin thickness. Based on the experimental data, we demonstrated that under high pressure, the samples experienced two different high-pressure structural phase transitions up to 29.4 GPa: from monoclinic P21/n structure (phase I, α-Ag2S) to orthorhombic P212121 structure (phase II) at 8.9 GPa and then to monoclinic P21/n structure (phase III) at 12.4 GPa. The critical phase transition pressures for phase II and phase III are approximately 2–3 GPa higher than that of 30 nm Ag2S nanoparticles and bulk materials. Additionally, phase III was stable up to the highest pressure of 29.4 GPa. Bulk moduli of Ag2S nanosheets were obtained as 73(6) GPa for phase I and 141(4) GPa for phase III, which indicate that the samples are more difficult to compress than their bulk counterparts and some other reported Ag2S nanoparticles. Further analysis suggested that the nanosize effect arising from the smaller thickness of Ag2S nanosheets restricts the relative position slip of the interlayer atoms during the compression, which leads to the enhancing of phase stabilities and the elevating of bulk moduli.
    Type of Medium: Online Resource
    ISSN: 2079-4991
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2662255-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Biomolecules, MDPI AG, Vol. 13, No. 2 ( 2023-02-06), p. 303-
    Abstract: Background: The CAV family, especially CAV1 and CAV2, is significantly associated with tumor development. In this study, we aimed to explore the pathogenic and prognostic roles of CAV1 and CAV2 in head and neck squamous cell carcinoma (HNSCC) through bioinformatic analysis and verified in human tissue. Methods: We analyzed expression profiles of CAV1 and CAV2 in HNSCC and in normal tissues via data from The Cancer Genome Altas. Prognostic significance was examined by Kaplan–Meier survival curve obtained from the Xena browser together with Cox regression analysis. Co-expressed genes were uploaded to GeneMANIA and applied to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, showing interaction networks. Signaling pathways of CAV1 and CAV2 in HNSCC were analyzed by Gene Set Enrichment Analysis to elucidate potential regulatory mechanisms. Gene–drug interaction network was explored via Comparative Toxicogenomics Database. Immunohistochemistry was performed to verify theoretical results. Results: Compared with normal tissues, expression levels of CAV1 and CAV2 were remarkably higher in HNSCC (p 〈 0.0001), which independently implies poor OS (CAV1: HR: 1.146, p = 0.027; CAV2: HR: 1.408, p = 0.002). Co-expressed genes (PXN, ITGA3, TES, and MET) were identified and analyzed by FunRich with CAV1 and CAV2, revealing a significant correlation with focal adhesion (p 〈 0.001), which has a vital influence on cancer progression. GSEA also showed cellular protein catabolic process (ES = 0.42) and proteasome complex (ES = 0.72), which is a key degradation system for proteins involved in oxidatively damaging and cell cycle and transcription, closely correlated with high expression of CAV2 in HNSCC. More importantly, we found the relationship between different immune cell infiltration degrees in the immune micro-environment in HNSCC and expression levels of CAV1/CAV2 (p 〈 0.0001). Gene–drug interaction network was checked via CTD. Moreover, tissue microarrays verified higher expression levels of CAV1/CAV2 in HNSCC (p 〈 0.0001), and the high expression subgroup indicated significantly poorer clinical outcomes (p 〈 0.05). Conclusions: The results revealed that CAV1 and CAV2 are typically upregulated in HNSCC and might predict poor prognosis.
    Type of Medium: Online Resource
    ISSN: 2218-273X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2701262-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Molecules Vol. 27, No. 20 ( 2022-10-18), p. 6994-
    In: Molecules, MDPI AG, Vol. 27, No. 20 ( 2022-10-18), p. 6994-
    Abstract: Graphite anodes are well established for commercial use in lithium-ion battery systems. However, the limited capacity of graphite limits the further development of lithium-ion batteries. Hard carbon obtained from biomass is a highly promising anode material, with the advantage of enriched microcrystalline structure characteristics for better lithium storage. Tannin, a secondary product of metabolism during plant growth, has a rich source on earth. But the mechanism of hard carbon obtained from its derivation in lithium-ion batteries has been little studied. This paper successfully applied the hard carbon obtained from tannin as anode and illustrated the relationship between its structure and lithium storage performance. Meanwhile, to further enhance the performance, graphene oxide is skillfully compounded. The contact with the electrolyte and the charge transfer capability are effectively enhanced, then the capacity of PVP-HC is 255.5 mAh g−1 after 200 cycles at a current density of 400 mA g−1, with a capacity retention rate of 91.25%. The present work lays the foundation and opens up ideas for the application of biomass-derived hard carbon in lithium anodes.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2008644-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  International Journal of Molecular Sciences Vol. 23, No. 3 ( 2022-02-04), p. 1785-
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 23, No. 3 ( 2022-02-04), p. 1785-
    Abstract: Tyrosine kinase inhibitor (TKI) therapy has greatly improved lung cancer survival in patients with epidermal growth factor receptor (EGFR) mutations. However, the development of TKI-acquired resistance is the major problem to be overcome. In this study, we found that miR-196a expression was greatly induced in gefitinib-resistant lung cancer cells. To understand the role and mechanism of miR-196a in TKI resistance, we found that miR-196a-forced expression alone increased cell resistance to gefitinib treatment in vitro and in vivo by inducing cell proliferation and inhibiting cell apoptosis. We identified the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) bound to the promoter region of miR-196a and induced miR-196a expression at the transcriptional level. NRF2-forced expression also significantly increased expression levels of miR-196a, and was an upstream inducer of miR-196a to mediate gefitinib resistance. We also found that glycolipid transfer protein (GLTP) was a functional direct target of miR-196a, and downregulation of GLTP by miR-196a was responsible for gefitinib resistance. GLTP overexpression alone was sufficient to increase the sensitivity of lung cancer cells to gefitinib treatment. Our studies identified a new role and mechanism of NRF2/miR-196a/GLTP pathway in TKI resistance and lung tumor development, which may be used as a new biomarker (s) for TKI resistance or as a new therapeutic target in the future.
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Agriculture, MDPI AG, Vol. 11, No. 2 ( 2021-01-25), p. 98-
    Abstract: Understanding the characteristics of carbon ion beam irradiation-induced mutation is essential to its potential application in plant breeding. A carbon ion beam-mutagenized soybean population was generated from the newly released soybean variety Dongsheng 28, with irradiation dosages of 100 Gy, 120 Gy and 140 Gy. Many phenotypic variations and novel mutants with heritable tendencies including plant height mutants, sterile mutants, early mature mutants, rolled leaves and short petioles mutants, yield-related mutants and lodging-resistant mutants were identified. Diverse variations in seed size, seed protein and oil concentration were found. Increasing irradiation dosage from 100 Gy to 140 Gy increased leaf chlorophyll concentration in M1 generation, but this effect was significantly reduced in M2 generation. The activities of superoxide dismutase (SOD), peroxidase (POD) and malondialdehyde (MDA) concentration all showed wider variation in M1 and M2 generation, the only exception being that the MDA concentration was similar to the control in the M2 generation. Overall, we suggest that treating soybean seeds with carbon ion beam irradiation at a dosage of 120 Gy (80 Mev/u) could be effective in soybean mutation breeding.
    Type of Medium: Online Resource
    ISSN: 2077-0472
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2651678-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: International Journal of Molecular Sciences, MDPI AG, Vol. 16, No. 10 ( 2015-10-09), p. 23784-23822
    Type of Medium: Online Resource
    ISSN: 1422-0067
    Language: English
    Publisher: MDPI AG
    Publication Date: 2015
    detail.hit.zdb_id: 2019364-6
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Water, MDPI AG, Vol. 13, No. 20 ( 2021-10-15), p. 2902-
    Abstract: Phosphorus is one of the main factors causing water eutrophication, and the traditional phosphorus removal process causes phosphorus-rich sludge pollution. The facultative MBR process uses phosphate-reducing bacteria to convert phosphate into directly recyclable gaseous phosphine to solve this malpractice and make sewage become a new phosphorus resource. In order to investigate the phosphorus removal efficiency and the mechanism under facultative conditions, run the facultative MBR reactor for 30 days. The COD value, phosphate concentration, and phosphine yield were measured, and the changes of sludge metabolic pathway abundance and community composition in different periods were detected. According to the measurement, the maximum phosphorus removal efficiency is 43.11% and the maximum yield of phosphine is 320 μg/m3 (measured by the volume of sewage). Combined with thermodynamic analysis, the microbial mechanism of the reactor was proposed, and the possible transformation pathway of phosphorus was analyzed. At last, changes the phosphorus removal process from the ‘removal type’ to the ‘recycling type’.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2521238-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Atmosphere, MDPI AG, Vol. 13, No. 8 ( 2022-08-01), p. 1217-
    Abstract: Comparing the branching features of negative leaders with different propagation directions could provide insight into the common tendency of development pathways and the formation pattern of branches in natural lightning. This paper reports an upward negative leader (UNL) and a downward negative leader (DNL), and their branching features are analyzed and compared. The UNL is classified into vertical (UNL-V) and horizontal (UNL-H) segments based on propagation directions at different stages. The downward negative leader (DNL) is classified into main (DNL-M) and secondary (DNL-S) channels based on whether the channel is ultimately connected to the upward connecting leader. The vital angle parameters characterizing the branching morphology are investigated. For the strong branch eventually forming a section of the main channel, its deflection angle conforms to the lognormal distribution with a mean range of 22–36°. The included angle between the branches and the deflection angle of weak branches conform to the normal distribution with means close to 40° and 60°, respectively. Moreover, the velocity for four categories of negative leaders decreases noticeably by two or more branching behaviors in a frame interval of about 80 μs. In particular, similarities in branching morphology have been found in UNL-H, UNL-V, and DNL-S, with a semblable distribution in deflection and included angles. Statistical results indicate that branches of DNL-M tend to follow the previous direction of leader development, and the branching behavior has minimal impact on its velocity.
    Type of Medium: Online Resource
    ISSN: 2073-4433
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2605928-9
    SSG: 23
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Marine Drugs, MDPI AG, Vol. 20, No. 2 ( 2022-02-12), p. 136-
    Abstract: Chitosan/alginate nanoparticles (DG1-NPs and DG1/Cur-NPs) aiming to enhance the oral antithrombotic activity of clam heparinoid DG1 were prepared by ionotropic pre-gelation. The influence of parameters, such as the concentration of sodium alginate (SA), chitosan (CTS), CaCl2, clam heparinoid DG1, and curcumin (Cur), on the characteristics of the nanoparticles, were investigated. Results indicate that chitosan and alginate can be used as polymer matrices to encapsulate DG1, and nanoparticle characteristics depend on the preparation parameters. Nano-particles should be prepared using 0.6 mg/mL SA, 0.33 mg/mL CaCl2, 0.6 mg/mL CTS, 7.2 mg/mL DG1, and 0.24 mg/mL Cur under vigorous stirring to produce DG1-NPS and DG1/Cur-NPS with small size, high encapsulation efficiency, high loading capacity, and negative zeta potential from approximately −20 to 30 mV. Data from scanning electron microscopy, Fourier-transform infrared spectrometry, and differential scanning calorimetry analyses showed no chemical reaction between DG1, Cur, and the polymers; only physical mixing. Moreover, the drug was loaded in the amorphous phase within the nanoparticle matrix. In the acute pulmonary embolism murine model, DG1-NPs enhanced the oral antithrombotic activity of DG1, but DG1/Cur-NPs did not exhibit higher antithrombotic activity than DG1-NPs. Therefore, the chitosan/alginate nanoparticles enhanced the oral antithrombotic activity of DG1, but curcumin did not further enhance this effect.
    Type of Medium: Online Resource
    ISSN: 1660-3397
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2175190-0
    SSG: 15,3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages