Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (5)
Type of Medium
Publisher
  • MDPI AG  (5)
Language
Years
  • 1
    In: Sensors, MDPI AG, Vol. 24, No. 4 ( 2024-02-07), p. 1093-
    Abstract: A surface-enhanced Raman scattering (SERS) method for measuring nitrate nitrogen in aquaculture water was developed using a substrate of β-cyclodextrin-modified gold nanoparticles (SH-β-CD@AuNPs). Addressing the issues of low sensitivity, narrow linear range, and relatively poor selectivity of single metal nanoparticles in the SERS detection of nitrate nitrogen, we combined metal nanoparticles with cyclodextrin supramolecular compounds to prepare a AuNPs substrate enveloped by cyclodextrin, which exhibits ultra-high selectivity and Raman activity. Subsequently, vanadium(III) chloride was used to convert nitrate ions into nitrite ions. The adsorption mechanism between the reaction product benzotriazole (BTAH) of o-phenylenediamine (OPD) and nitrite ions on the SH-β-CD@AuNPs substrate was studied through SERS, achieving the simultaneous detection of nitrate nitrogen and nitrite nitrogen. The experimental results show that BTAH exhibits distinct SERS characteristic peaks at 1168, 1240, 1375, and 1600 cm−1, with the lowest detection limits of 3.33 × 10−2, 5.84 × 10−2, 2.40 × 10−2, and 1.05 × 10−2 μmol/L, respectively, and a linear range of 0.1–30.0 μmol/L. The proposed method provides an effective tool for the selective and accurate online detection of nitrite and nitrate nitrogen in aquaculture water.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2024
    detail.hit.zdb_id: 2052857-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Materials, MDPI AG, Vol. 16, No. 11 ( 2023-05-24), p. 3932-
    Abstract: As the focus on physical health increases, the market demand for flexible wearable sensors increases. Textiles combined with sensitive materials and electronic circuits can form flexible, breathable high-performance sensors for physiological-signal monitoring. Carbon-based materials such as graphene, carbon nanotubes (CNTs), and carbon black (CB) have been widely utilized in the development of flexible wearable sensors due to their high electrical conductivity, low toxicity, low mass density, and easy functionalization. This review provides an overview of recent advancements in carbon-based flexible textile sensors, highlighting the development, properties, and applications of graphene, CNTs, and CB for flexible textile sensors. The physiological signals that can be monitored by carbon-based textile sensors include electrocardiogram (ECG), human body movement, pulse and respiration, body temperature, and tactile perception. We categorize and describe carbon-based textile sensors based on the physiological signals they monitor. Finally, we discuss the current challenges associated with carbon-based textile sensors and explore the future direction of textile sensors for monitoring physiological signals.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2487261-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Chemosensors Vol. 11, No. 8 ( 2023-08-15), p. 459-
    In: Chemosensors, MDPI AG, Vol. 11, No. 8 ( 2023-08-15), p. 459-
    Abstract: The development of flexible electronic technology has led to significant advancements in wearable sensors. In the past decades, wearable chemosensors have received much attention from researchers worldwide due to their high portability, flexibility, lightweight, and adaptability. It allows real-time access to the user’s physiological status at the molecular level to analyze their health status. Therefore, it can be widely used in the field of precision medicine. This review introduces the sensing mechanisms of wearable chemosensors and recent progress in wearable sweat and interstitial fluid-based chemosensors. The complexities of wearable chemosensors are not to be underestimated, as there are considerable challenges in this field. This review aims to shed light on the difficulties associated with designing wearable sweat and interstitial fluid-based chemosensors and their potential development directions.
    Type of Medium: Online Resource
    ISSN: 2227-9040
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2704218-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Polymers, MDPI AG, Vol. 15, No. 12 ( 2023-06-16), p. 2699-
    Abstract: Spatial distribution perception has become an important trend for flexible pressure sensors, which endows wearable health devices, bionic robots, and human–machine interactive interfaces (HMI) with more precise tactile perception capabilities. Flexible pressure sensor arrays can monitor and extract abundant health information to assist in medical detection and diagnosis. Bionic robots and HMI with higher tactile perception abilities will maximize the freedom of human hands. Flexible arrays based on piezoresistive mechanisms have been extensively researched due to the high performance of pressure-sensing properties and simple readout principles. This review summarizes multiple considerations in the design of flexible piezoresistive arrays and recent advances in their development. First, frequently used piezoresistive materials and microstructures are introduced in which various strategies to improve sensor performance are presented. Second, pressure sensor arrays with spatial distribution perception capability are discussed emphatically. Crosstalk is a particular concern for sensor arrays, where mechanical and electrical sources of crosstalk issues and the corresponding solutions are highlighted. Third, several processing methods are also introduced, classified as printing, field-assisted and laser-assisted fabrication. Next, the representative application works of flexible piezoresistive arrays are provided, including human-interactive systems, healthcare devices, and some other scenarios. Finally, outlooks on the development of piezoresistive arrays are given.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2527146-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Materials Vol. 16, No. 17 ( 2023-08-30), p. 5952-
    In: Materials, MDPI AG, Vol. 16, No. 17 ( 2023-08-30), p. 5952-
    Abstract: With the development of medical technology and increasing demands of healthcare monitoring, wearable temperature sensors have gained widespread attention because of their portability, flexibility, and capability of conducting real-time and continuous signal detection. To achieve excellent thermal sensitivity, high linearity, and a fast response time, the materials of sensors should be chosen carefully. Thus, reduced graphene oxide (rGO) has become one of the most popular materials for temperature sensors due to its exceptional thermal conductivity and sensitive resistance changes in response to different temperatures. Moreover, by using the corresponding preparation methods, rGO can be easily combined with various substrates, which has led to it being extensively applied in the wearable field. This paper reviews the state-of-the-art advances in wearable temperature sensors based on rGO films and summarizes their sensing mechanisms, structure designs, functional material additions, manufacturing processes, and performances. Finally, the possible challenges and prospects of rGO-based wearable temperature sensors are briefly discussed.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2487261-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages