Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2018
    In:  Sensors Vol. 18, No. 12 ( 2018-11-26), p. 4145-
    In: Sensors, MDPI AG, Vol. 18, No. 12 ( 2018-11-26), p. 4145-
    Abstract: Residual vibration suppression of a 3-DOF flexible parallel robot mechanism is implemented in this paper. Considering the direct and inverse piezoelectric effect of PZT (lead zirconium titanate) material, a general motion equation is established which includes an input equation of PZT actuators and an output equation of PZT sensors. A strain and strain rate feedback (SSRF) controller is designed based on the established general motion equation. A numerical simulation is implemented to verify the effectiveness of the SSRF controller in driving the proposed robotic mechanism. The simulation results reveal that the SSRF controller can decrease the elastic vibration displacement of the flexible links rapidly and improve the position accuracy of the moving platform. In the experimental study, one scheme with three passive flexible links is controlled by the SSRF controller at the same time as the performance of the introduced solutions. The experimental results show that the strain and strain rate feedback controller is able to effectively suppress the residual vibration of the 3-DOF flexible parallel robot mechanism. The results of the numerical simulation and experiment are completely consistent.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2052857-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Machines Vol. 10, No. 9 ( 2022-09-02), p. 761-
    In: Machines, MDPI AG, Vol. 10, No. 9 ( 2022-09-02), p. 761-
    Abstract: To improve the adaptive clamping performance of traditional single-tendon-driven underactuated grippers for grasping multiple categories of objects, a novel dual-tendon-driven underactuated gripper is proposed in this paper. First, two independent tendons with different winding paths are designed in the gripper to realize the changeable resultant moment of the end knuckle rotating joint and the movement sequences of gripper knuckles driven by different tendons are analysed too. Then, some kinematic analysis and dynamical simulations are carried out to verify the validation of the knuckle structure and dual-tendon winding path design. At last, a prototype of the novel gripper is manufactured and some grasping experiments are carried out on multiple categories of objects, with different sizes and shapes. The experimental results show that all the objects can be clamped tightly. Compared with the traditional single-tendon-driven gripper, the novel one can achieve a more flexible grasping operation and a larger end clamping force, which are more suitable for the adaptive grasping requirements of robotic automatic sorting.
    Type of Medium: Online Resource
    ISSN: 2075-1702
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704328-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Molecules, MDPI AG, Vol. 27, No. 12 ( 2022-06-20), p. 3958-
    Abstract: Relative permeability of polymer flooding plays a very important role in oil field development. This paper aimed to measure and calculate the relative permeability curves of polymer flooding more accurately. First, viscosity variation law of polymer in porous media was studied. Rock particles of different diameters and cementing agent were used to make artificial cores and hydrophobically associating polymer solutions were prepared for experiments. Polymer solutions were injected into the cores filled with crude oil and irreducible water. In the process of polymer flooding, produced fluid was collected at different water saturations and locations of the core. Polymer solutions were separated and their viscosities were measured. With the experimental data, the viscosity variation rule of polymer transporting in porous media was explored. The result indicates that the viscosity retention rate of polymer solutions transporting in porous media has power function relationship with the water saturation and the dimensionless distance from the core inlet. Finally, the relative permeability curves of polymer flooding were measured by unsteady state method and the viscosity variation rule was applied to the calculation of the relative permeability curves.
    Type of Medium: Online Resource
    ISSN: 1420-3049
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2008644-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Biosensors, MDPI AG, Vol. 11, No. 9 ( 2021-08-28), p. 302-
    Abstract: In this study, we investigated the utility of native T1 mapping in differentiating between various grades of fibrosis and compared its diagnostic accuracy to magnetization transfer imaging (MTI) in a rat model of CD. Bowel specimens (64) from 46 CD model rats undergoing native T1 mapping and MTI were enrolled. The longitudinal relaxation time (T1 value) and normalized magnetization transfer ratio (MTR) were compared between none-to-mild and moderate-to-severe fibrotic bowel walls confirmed by pathological assessments. The results showed that the correlation between the T1 value and fibrosis (r = 0.438, p 〈 0.001) was lower than that between the normalized MTR and fibrosis (r = 0.623, p 〈 0.001). Overall, the T1 values (t = −3.066, p = 0.004) and normalized MTRs (z = 0.081, p 〈 0.001) in none-to-mild fibrotic bowel walls were lower than those in moderate-to-severe fibrotic bowel walls. The area under the curve (AUC) of the T1 value (AUC = 0.716, p = 0.004) was significantly lower than that of the normalized MTR (AUC = 0.881, p 〈 0.001) in differentiating moderate-to-severe fibrosis from none-to-mild fibrosis (z = −2.037, p = 0.042). Our results support the view that the T1 value could be a promising imaging biomarker in grading the fibrosis severity of CD. However, the diagnostic performance of native T1 mapping was not superior to MTI.
    Type of Medium: Online Resource
    ISSN: 2079-6374
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2662125-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Mathematics Vol. 11, No. 18 ( 2023-09-19), p. 3969-
    In: Mathematics, MDPI AG, Vol. 11, No. 18 ( 2023-09-19), p. 3969-
    Abstract: Accurate grasping state detection is critical to the dexterous operation of robots. Robots must use multiple modalities to perceive external information, similar to humans. The direct fusion method of visual and tactile sensing may not provide effective visual–tactile features for the grasping state detection network of the target. To address this issue, we present a novel visual–tactile fusion model (i.e., RFCT) and provide an incremental dimensional tensor product method for detecting grasping states of weak-stiffness targets. We investigate whether convolutional block attention mechanisms (CBAM) can enhance feature representations by selectively attending to salient visual and tactile cues while suppressing less important information and eliminating redundant information for the initial fusion. We conducted 2250 grasping experiments using 15 weak-stiffness targets. We used 12 targets for training and three for testing. When evaluated on untrained targets, our RFCT model achieved a precision of 82.89%, a recall rate of 82.07%, and an F1 score of 81.65%. We compared RFCT model performance with various combinations of Resnet50 + LSTM and C3D models commonly used in grasping state detection. The experimental results show that our RFCT model significantly outperforms these models. Our proposed method provides accurate grasping state detection and has the potential to provide robust support for robot grasping operations in real-world applications.
    Type of Medium: Online Resource
    ISSN: 2227-7390
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2704244-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Metals, MDPI AG, Vol. 9, No. 12 ( 2019-12-11), p. 1335-
    Abstract: Inconel 718 alloy laser-welded joints have poor mechanical properties due to the presence of Laves phases and liquation cracks. This paper intends to solve the above problems by high-frequency micro-vibration-coupled bead-on-plate laser welding. According to the shape of the weld beam, the upper part of the weld is defined as the nail head, and the lower part is the nail body. The results showed that high-frequency micro-vibration can achieve grain refinement. The micro-vibration could break the primary dendrite arm to form secondary dendrite and reduce epitaxial growth of the cellular crystal region. Micro-vibration exacerbated the flow of Niobium (Nb) elements surrounded by dendrites and reduced dendritic segregation, which decreased the formation of Laves phases. The combination of interdendritic Nickel (Ni), Titanium (Ti), and Nb and the precipitation of strengthening phases γ′ and γ″ were promoted. When the vibration acceleration was 50.10 m/s2, it could inhibit the formation of Laves phases among dendrites and the size of the bulk Laves phase was effectively reduced. The cracks generated in the Inconel 718 alloy were distributed at three locations including the nail-head, the nail-body, and the junction of nail-head and nail-body. When the vibration frequency was 919 Hz, the length of the liquation crack reduced from 180 to 110 μm. While under 1331 Hz, the expansion of the liquation crack was extended, with the length of 200 μm.
    Type of Medium: Online Resource
    ISSN: 2075-4701
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2662252-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Biology, MDPI AG, Vol. 11, No. 2 ( 2022-01-28), p. 208-
    Abstract: Spatial biodiversity is a key issue in biogeography for the explorations of biological origin and diversification. However, seldom studies have addressed the temporal changes in spatial patterns of biodiversity. We explored the taxonomic and functional diversities of riverine macroinvertebrates in central China, with the elevational gradient, in different seasons in a normal climate year (i.e., no extreme anomalies in the annual precipitation or average annual temperature). The air temperature and streamflow discharge were decreased monotonically with the increase of elevation both in the dry and wet seasons. In addition, the total nitrogen had no significant change with the increase of elevational gradient in the dry season but showed a monotonically decreasing pattern in the wet season. The total phosphorus showed a monotonically decreasing pattern with the elevational gradient in the dry season but had no significant change in the wet season. The spatial pattern of taxonomic diversity of macroinvertebrates along the elevational gradient showed complex patterns, but the functional diversity had either the unimodal or monotonically decreasing pattern. In addition, the functional diversity with the elevational gradient had similar patterns between the dry and wet seasons. Further analysis of the elevational pattern in different seasons is an important basis for understanding the status quo of functional diversity and formulating countermeasures for biodiversity conservation.
    Type of Medium: Online Resource
    ISSN: 2079-7737
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2661517-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Sensors, MDPI AG, Vol. 22, No. 14 ( 2022-07-18), p. 5358-
    Abstract: When performing robotic automatic sorting and assembly operations of multi-category hardware, there are some problems with the existing convolutional neural network visual recognition algorithms, such as large computing power consumption, low recognition efficiency, and a high rate of missed detection and false detection. A novel efficient convolutional neural algorithm for multi-category aliasing hardware recognition is proposed in this paper. On the basis of SSD, the novel algorithm uses Resnet-50 instead of VGG16 as the backbone feature extraction network, and it integrates ECA-Net and Improved Spatial Attention Block (ISAB): two attention mechanisms to improve the ability of learning and extract target features. Then, we pass the weighted features to extra feature layers to build an improved SSD algorithm. At last, in order to compare the performance difference between the novel algorithm and the existing algorithms, three kinds of hardware with different sizes are chosen to constitute an aliasing scene that can simulate an industrial site, and some comparative experiments have been completed finally. The experimental results show that the novel algorithm has an mAP of 98.20% and FPS of 78, which are better than Faster R-CNN, YOLOv4, YOLOXs, EfficientDet-D1, and original SSD in terms of comprehensive performance. The novel algorithm proposed in this paper can improve the efficiency of robotic sorting and assembly of multi-category hardware.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2052857-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Water, MDPI AG, Vol. 13, No. 4 ( 2021-02-09), p. 447-
    Abstract: It is reasonable to simulate the hydrologic cycle in regions with drastic land use change using a distributed hydrologic model in the dynamic land use mode (dynamic mode). A new dynamic mode is introduced into an object-oriented modularized model for basin-scale water cycle simulation (MODCYCLE), a distributed hydrologic model based on sub-watersheds, and the hydrological response unit (HRU). The new mode can linearly interpolate data for the years without land use data and consistently transfer HRU water storage between two adjacent years after a land use data update. The hydrologic cycle simulation of the Sanjiang Plain in China was carried out from 2000 to 2014 in the dynamic mode using land use maps of 2000, 2005, 2010, and 2014. Through calibration and validation, the performance of the model reached a satisfactory level. Replacing the land use data of the calibrated model using that of the year 2000, a comparison model in the static land use mode (static mode) was built (i.e., land use unchanged since 2000). The hydrologic effects of land use change were analyzed using the two models. If the land use pattern remained unchanged from 2000, despite the average annual runoff increasing by 4% and the average annual evapotranspiration decreasing by 4% in this region only, the groundwater storage of the plain areas in 2014 would increase by 4.6 bil. m3 compared to that in 2000, rather than the actual decrease of 4.7 bil. m3. The results show that the fluxes associated with groundwater are obviously more disturbed by land use change in the Sanjiang Plain. This study suggests that the dynamic mode should be used to simulate the hydrologic cycle in regions with drastic land use change, and the consistent transfer of HRU water storage may be considered in the dynamic mode.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2521238-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Sustainability Vol. 15, No. 1 ( 2022-12-21), p. 120-
    In: Sustainability, MDPI AG, Vol. 15, No. 1 ( 2022-12-21), p. 120-
    Abstract: Negative obstacles such as potholes and road collapses on unstructured roads in open-pit mining areas seriously affect the safe transportation of autonomous trucks. In this paper, we propose a real-time negative obstacle detection method for self-driving trucks in open-pit mines. By analyzing the characteristics of road negative obstacles in open-pit mines, a real-time target detection model based on the Yolov4 network was built. It uses RepVGG as the backbone feature extraction network, applying SimAM space and a channel attention mechanism to negative obstacle multiscale feature fusion. In addition, the classification and prediction modules of the network are optimized to improve the accuracy with which it detects negative obstacle targets. A non-maximum suppression optimization algorithm (CIoU Soft Non-Maximum Suppression, CS-NMS) is proposed in the post-processing stage of negative obstacle detection. The CS-NMS calculates the confidence of each detection frame with weighted optimization to solve the problems of encountering obscure negative obstacles or poor positioning accuracy of the detection boxes. The experimental results show that this research method achieves 96.35% mAP for detecting negative obstacles on mining roads with a real-time detection speed of 69.3 fps, and that it can effectively identify negative obstacles on unstructured roads in open-pit mines with complex backgrounds.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2518383-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages