Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (3)
  • 1
    In: Agronomy, MDPI AG, Vol. 13, No. 6 ( 2023-06-12), p. 1587-
    Abstract: Nontarget-site resistance (NTSR) is a complex multigenic trait that is associated with the potential mechanisms of herbicide resistance which pose a serious threat to global crop protection. However, the NTSR mechanisms of Alopecurus japonicus, a malignant weed infesting wheat fields, are less characterized. In this study, we used RNA-sequencing transcriptome and enzyme activity detection to investigate the NTSR mechanisms and candidate genes involved in fenoxaprop-P-ethyl (FE) in a previously identified resistant population compared to the sensitive population of A. japonicus. Transcriptome analysis identified nine upregulated genes, which were constitutively overexpressed and upregulated by FE application in the resistant population, and the results were validated using quantitative real-time PCR. These genes including one cytochrome P450 monooxygenase (P450) gene (CYP75B4), one ATP-binding cassette (ABC) transporter gene (ABCG36), one laccase (LAC) gene (LAC15), one 9-cis-epoxycarotenoid dioxygenase (NCED) gene (NCED5), two purple acid phosphatase (PAP) genes (PAP4, PAP15), one sucrose phosphate synthase (SPS) gene (SPS3), one protein related to disease resistance gene (RGA3) and one immune protein gene (R1B-17). The activity assay of LAC, NCED, PAP and SPS revealed that the activities of these enzymes in the resistant population were significantly higher than those in the sensitive population at 0 h and after FE application at 12 h, 24 h and 72 h. Nevertheless, whether LAC, NCED, PAP and SPS genes were involved in herbicide metabolism needs to be further validated. Our results revealed that CYP, ABC transporter and LAC genes may participate in A. japonicus resistance. These genes identified in the present study provide new insights into the resistance mechanism of weeds in response to herbicide. Our study also implies the complexity of the NTSR mechanisms of weeds.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Lubricants, MDPI AG, Vol. 11, No. 3 ( 2023-03-13), p. 130-
    Abstract: Aerostatic bearings have been widely applied to high-rotating speed machines due to their low friction and high rotational speed advantages. The geometry parameters, supply pressure and rotational speed play important roles in the static and dynamic performances of the aerostatic bearings. In this paper, the steady state and dynamic Reynolds equations are solved by the finite difference method (FDM) and used to study the static and dynamic performances of the aerostatic bearings. Then, combined with the motion equation of the rigid rotor-aerostatic bearing system, the linear stability of the aerostatic bearing is also studied. Moreover, based on the theory mentioned above, the influences of the geometry parameters (such as orifice diameter, radial clearance and eccentricity), rotational speed and supply pressure are investigated in detail. It was found that aerostatic bearing geometries, rotational speed and supply pressure had a significant effect on the steady and dynamic performances. Under the low-speed conditions and high supple pressure, the static pressure effect plays the main role in the performances of the aerostatic bearings, while on the contrary, the rotational effect plays the main role. Furthermore, a half-speed whirl may generate under certain conditions. The results also provide useful design guidelines for aerostatic bearings in high-speed machines.
    Type of Medium: Online Resource
    ISSN: 2075-4442
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2704327-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Lubricants, MDPI AG, Vol. 10, No. 11 ( 2022-11-11), p. 302-
    Abstract: Gas bearings have been widely applied to high-speed rotating machines due to their low friction and high rotational speed advantages. Nevertheless, gas lubrication is low viscosity and compressible. It causes the gas bearing-rotor system easy to produce self-excited vibration, which leads to instability of the rotor system and hinders the increase of rotor system speed. It is necessary to study the nonlinear behaviors of the aerostatic bearing-rotor system and the nonlinear vibration of the gas bearing-rotor system, especially considering the distribution mass and flexible and gyroscopic effects of the real rotor. In this paper, the nonlinear behavior of the gas bearing-rotor system is investigated from the viewpoint of nonlinear dynamics. Firstly, the dynamics model of a gas bearing rotor is established by combining the transient Reynolds equation and rotor dynamic equation obtained by finite element method (FEM). The transient Reynolds equation is solved using a hybrid method combining the differential transform method (DTM) and finite difference method (FDM). Then the transient gas force is substituted into the FEM rotor dynamic equation. In the end, based on the bifurcation diagram, the orbit of the rotor center, the frequency spectrum diagram and Poincaré map, the rotor system’s nonlinear behaviors are studied using a solution for the rotor dynamic equation with the Newmark method. Results show that there exists a limited cycle motion in the autonomous rotor system and half-speed whirl in the nonautonomous rotor system.
    Type of Medium: Online Resource
    ISSN: 2075-4442
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704327-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages