Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (2)
Type of Medium
Publisher
  • MDPI AG  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Applied Sciences Vol. 10, No. 8 ( 2020-04-12), p. 2664-
    In: Applied Sciences, MDPI AG, Vol. 10, No. 8 ( 2020-04-12), p. 2664-
    Abstract: This study focuses on assessing the effects of various food processing silver ear (Tremella fuciformis) powders in sugar-reduced ice cream through melting kinetic simulation, sensory properties and functional ingredients. T. fuciformis, a natural anti-melting stabilizer in ice cream, has the advantage of functional ingredients. Using 100, 200, and 300 mesh of particle sizes, and then selecting a suitable particle size, those are added to the additive ratios of 0.4, 0.9, and 1.4% T. fuciformis powder to replace fresh T. fuciformis fruit body. Decreased particle size of T. fuciformis powder significantly increased ice cream stability. Comparisons of sensory evaluation and melting properties, in order to learn the differences of T. fuciformis ice cream under various stabilizer models, were evaluated and elucidated. Therefore, we obtained 300 mesh at 0.9% additive ratio of T. fuciformis powder, which is closest to the fresh fruit body/base ice cream. The enrichment of ice cream with T. fuciformis is to enhance the nutritional aspects and develop a functional food. Overall, the kinetic parameters of T. fuciformis ice cream melting can be provided as a reference for frozen dessert processing technology.
    Type of Medium: Online Resource
    ISSN: 2076-3417
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2704225-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Processes, MDPI AG, Vol. 9, No. 7 ( 2021-07-13), p. 1204-
    Abstract: Ultraviolet B (UVB) irradiation can cause human skin damage or skin aging and wrinkle formation through photochemical reactions. Antioxidative substances may ameliorate UV damage. In this study, the anti-photoaging activity of three antioxidants—ergothioneine, ferulic acid, and glutathione—was investigated after UVB irradiation of Hs68 human skin fibroblast cells. The cells treated with these three antioxidants appeared similar to unirradiated control cells. UVB irradiation decreased cell viability by 26% compared to that of unirradiated control cells. However, the addition of either single or combined antioxidants enhanced cell viability after UVB irradiation. These three antioxidants can inhibit the production of reactive oxygen species (ROS) induced by the UVB irradiation of the Hs68 cells. Ergothioneine showed a greater inhibitory effect on matrix metalloproteinase-1 (MMP-1) performance than the other two antioxidants. IL-1 alpha was not detected in the Hs68 cells after exposure to a radiation dose of 150 mJ/cm2. Ergothioneine showed better restoration of type 1 procollagen than either ferulic acid or glutathione. Based on these results, the addition of two antioxidants was expected to restore type Ι procollagen production. In summary, these results demonstrate that the three tested antioxidants protect the skin against UVB-induced damage. The single and combined use of ergothioneine, ferulic acid, and glutathione has the potential for development as anti-photoaging materials in cosmetic applications.
    Type of Medium: Online Resource
    ISSN: 2227-9717
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2720994-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages