Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • MDPI AG  (9)
Medientyp
Verlag/Herausgeber
  • MDPI AG  (9)
Sprache
Erscheinungszeitraum
  • 1
    Online-Ressource
    Online-Ressource
    MDPI AG ; 2018
    In:  Energies Vol. 12, No. 1 ( 2018-12-21), p. 20-
    In: Energies, MDPI AG, Vol. 12, No. 1 ( 2018-12-21), p. 20-
    Kurzfassung: Each arm of modular multilevel converter (MMC) consists of a large number of sub-module (SM) units. However, it also increases the probability of SM failure during the long-term system operation. Focusing on the fault-tolerant operation issue for the MMC under SM faults, the traditional zero-sequence voltage injection fault-tolerant control algorithm is analyzed detailed and its disadvantages are concluded. Based on this, a novel fault-tolerant control strategy based on phase disposition pulse-width modulation (PD-PWM) is proposed in this paper, which has three main benefits: (i) it has carrier and modulation wave dual correction mechanism, which control ability is more higher and flexible;(ii) it only needs to inject zero-sequence voltage in half a cycle of the modulation wave, which simplifies the complexity of traditional zero-sequence voltage injection control algorithms and much easier for implement; (iii) furthermore, the zero-sequence voltage can even be avoided injecting under the symmetrical fault conditions. Finally, the effectiveness of the proposed control strategy is verified with the simulation and experiment studies under different fault conditions.
    Materialart: Online-Ressource
    ISSN: 1996-1073
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2018
    ZDB Id: 2437446-5
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    MDPI AG ; 2022
    In:  Energies Vol. 15, No. 17 ( 2022-08-25), p. 6189-
    In: Energies, MDPI AG, Vol. 15, No. 17 ( 2022-08-25), p. 6189-
    Kurzfassung: Voltage stability has always been a hot topic in power system research. Traditional On-Load Tap-Charger (OLTC) transformer is considered to play a very important role in the system voltage stability. However, in the heavy load of distribution network, the tap adjustment of OLTC transformer will lead to the shift of critical stable operating point, which bring the “negative voltage regulating effect” of voltage adjustment, and even cause the instability of system voltage. This paper presents a Flexible On-Load Voltage Regulation (OLVR) transformer based on power electronic technology. The Flexible On-Load Voltage Regulation (OLVR) transformer is a combination of Power Electronic Converter (PEC) and OLTC transformer, which can realize voltage step-less regulation and reactive power regulation. Meanwhile, the paper presents the equivalent models of distribution network with Flexible OLVR transformer and analyzes the critical operating point. Through the step-less voltage regulation control of the Flexible OLVR transformer, the negative voltage regulation effect of the transformer in on-load voltage regulation is avoided, and the voltage stability of the distribution network is improved.
    Materialart: Online-Ressource
    ISSN: 1996-1073
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2022
    ZDB Id: 2437446-5
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    MDPI AG ; 2020
    In:  Energies Vol. 13, No. 6 ( 2020-03-23), p. 1520-
    In: Energies, MDPI AG, Vol. 13, No. 6 ( 2020-03-23), p. 1520-
    Kurzfassung: This paper proposes a local control strategy applied in the soft open point (SOP) to suppress voltage fluctuation when adding a renewable energy source into the system. The mathematic model of the grid connected to SOP is established based on the characteristics of a low-voltage distribution network. Combined with the mathematic model and local voltage information, the local control strategy is proposed to optimize the active and reactive power distribution and consume the minimum apparent power of the converter. The local control strategy can effectively suppress the voltage fluctuation caused by renewable energy access, which was testified by MATLAB/Simulink simulation. In addition, the local control strategy can deduce the communication resource and increase the response speed compared to global optimization. This paper is meaningful for renewable energy source distribution and voltage balance in low-voltage distribution systems.
    Materialart: Online-Ressource
    ISSN: 1996-1073
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2020
    ZDB Id: 2437446-5
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    MDPI AG ; 2020
    In:  Energies Vol. 13, No. 6 ( 2020-03-13), p. 1347-
    In: Energies, MDPI AG, Vol. 13, No. 6 ( 2020-03-13), p. 1347-
    Kurzfassung: The analysis and calculation of the short-circuit fault current in the DC grid is of great significance to the design and configuration of the converter station and DC circuit breaker parameters. The existing flexible DC system not only includes the modular multilevel converter (MMC) converter, but also needs power equipment such as the fault current limiter and DC circuit breaker. Therefore, the system modeling and short circuit calculation of the multi-terminal DC system after adding the DC circuit breaker are also of great significance for the design of DC power system parameters and the grid troubleshooting ability. In this paper, firstly, the parameters of the four-terminal DC system of the modular multilevel converter (MMC) are simplified, and the analytical solution of the short circuit fault current of the multi-terminal DC system is given. Then, the external characteristics of the cascaded hybrid DC circuit breaker are modeled. Based on the equivalent circuit of the fault current in different stages, the short circuit calculation method of four-terminal MMC system with DC circuit breaker is obtained. This method can effectively describe the overall trend of fault current and provide the basis for the configuration of DC line protection settings and DC circuit breaker related parameters.
    Materialart: Online-Ressource
    ISSN: 1996-1073
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2020
    ZDB Id: 2437446-5
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    MDPI AG ; 2018
    In:  Energies Vol. 12, No. 1 ( 2018-12-28), p. 91-
    In: Energies, MDPI AG, Vol. 12, No. 1 ( 2018-12-28), p. 91-
    Kurzfassung: Voltage source converter-based high-voltage direct current transmission system (VSC-HVDC) technology has been widely used. However, traditional half-bridge sub module (HBSM)-based module multilevel converter (MMC) cannot block a DC fault current. This paper proposes that a full-bridge director switches based multi-level converter can offer features such as DC side fault blocking capability and is more compact and lower cost than other existing MMC topologies. A suitable predictive control strategy is proposed to minimize the error of the output AC current and the capacitor voltage of the sub-module while the director switches are operated in low-frequency mode. The validity of the proposed topology and control method is demonstrated based on simulation and experimental studies.
    Materialart: Online-Ressource
    ISSN: 1996-1073
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2018
    ZDB Id: 2437446-5
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    MDPI AG ; 2020
    In:  Electronics Vol. 9, No. 12 ( 2020-12-10), p. 2109-
    In: Electronics, MDPI AG, Vol. 9, No. 12 ( 2020-12-10), p. 2109-
    Kurzfassung: In order to ensure the reliable power supply of the local load in the micro-grid (MG), a seamless switching control technology (SSCT) suitable for grid-connected converter (GCC) is proposed. This technology includes silicon-controlled rectifiers (SCR) forced shutdown control strategy (SCR-FSCS) and three-loop control strategy (TLCS). The SCR-SSCT adjusts the load voltage in real time to form a back voltage at the grid-connected inductor, which greatly reduces the SCR shutdown time and ensures the reliability of local load power supply. The TLCS can easily realize the switching between the current source mode and the voltage source mode of the GCC. An experimental platform is established to carry out the relevant experiments. The experimental results show the rationality and effectiveness of the theoretical analysis and the proposed control technology.
    Materialart: Online-Ressource
    ISSN: 2079-9292
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2020
    ZDB Id: 2662127-7
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    MDPI AG ; 2022
    In:  Energies Vol. 15, No. 17 ( 2022-08-25), p. 6193-
    In: Energies, MDPI AG, Vol. 15, No. 17 ( 2022-08-25), p. 6193-
    Kurzfassung: The application of on-load tap-charger (OLTC) transformer technology has become the most direct and effective way to solve the voltage fluctuation of power grid. With the development of active distribution technology, the research focus of on-load voltage regulation technology has gradually turned to the development direction of arc free, fast and intelligent. This paper presents a flexible on-load voltage regulation topology based on power electronic technology. The flexible on-load voltage regulation (flexible OLVR) transformer is a combination of power electronic technology and traditional on-load tap-charger transformer, which can realize fast arcless switching, voltage step-less regulation, power regulation and other functions. In this paper, a new type of flexible on-load voltage regulation transformer is proposed. The OLTC switches of the device adopts the power electronic switch of anti-parallel thyristors, which can realize step, fast and arcless voltage regulation; the power electronic converter (PEC) module is connected to the primary side of the main transformer. At the same time, it proposed a new reactive power compensation control strategy, which could realize the functions of step-less voltage regulation and reactive power compensation. In the end, the rationality and validity of the proposed topology is tested and verified by simulations and experimental tests.
    Materialart: Online-Ressource
    ISSN: 1996-1073
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2022
    ZDB Id: 2437446-5
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    In: Energies, MDPI AG, Vol. 12, No. 15 ( 2019-07-24), p. 2844-
    Kurzfassung: The widely used flywheel energy storage (FES) system has such advantages as high power density, no environment pollution, a long service life, a wide operating temperature range, and unlimited charging–discharging times. The flywheel array energy storage system (FAESS), which includes the multiple standardized flywheel energy storage unit (FESU), is an effective solution for obtaining large capacity and high-power energy storage. In this paper, the strategy for coordinating and controlling the charging–discharging of the FAESS is studied in depth. Firstly, a deep analysis is conducted on the loss generated during the charging–discharging process of the FESU. The results indicate that the loss is related to the charging–discharging of power. To solve the problems of over-charging, over-discharging, and overcurrent caused by traditional charging–discharging control strategies, this paper proposes a charging–discharging coordination control strategy based on the equal incremental principle (EIP). This strategy aims to minimize the total loss and establish a mathematical model of optimal coordination control with the constraints of total charging–discharging power, rated power limit, over-charging, over-discharging, and overcurrent. Based on the EIP, the optimal distribution scheme of power charging–discharging is determined. Secondly, this paper gives the specific implementation scheme of the optimal coordinated control strategy. Lastly, the charging–discharging coordinated control strategy is verified by examples. The results show that the coordinated control strategy can effectively reduce the loss during the charging–discharging process and can prevent over-charging, over-discharging, and overcurrent of the system. Overall, it has a better control effect than the existing charging–discharging control strategies.
    Materialart: Online-Ressource
    ISSN: 1996-1073
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2019
    ZDB Id: 2437446-5
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Online-Ressource
    Online-Ressource
    MDPI AG ; 2022
    In:  Energies Vol. 15, No. 3 ( 2022-01-26), p. 903-
    In: Energies, MDPI AG, Vol. 15, No. 3 ( 2022-01-26), p. 903-
    Kurzfassung: Since each branch of the multiterminal DC circuit system relies on the DC circuit breaker for breaking and fault isolation, the prohibitive cost and huge volume of the Hybrid DC Circuit Breaker (HCB) limit its development and broad application in multiterminal flexible DC systems. Multiport hybrid DC circuit breaker (MP-HDCCB) based on device and branch sharing reduces the configuration cost of the circuit breaker to a certain extent. In order to further reduce the cost of MP-HDCCB, a novel MP-HDCCB topology based on hybrid switching devices is proposed, adopting full controlled switching devices to achieve rapidity of breaking fault current, and using semi-controlled switching devices in series to withstand the transient interruption voltage (TIV), so as to reduce the construction cost and technical difficulty. In this paper, the working principle and fault breaking strategy of the topology are introduced in detail, then the parameters of the major circuit are analyzed theoretically, and the parameter design of each branch is given. In the end, the rationality and validity of the proposed topology is tested and verified by simulations and experimental tests.
    Materialart: Online-Ressource
    ISSN: 1996-1073
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2022
    ZDB Id: 2437446-5
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz