Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (4)
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  World Electric Vehicle Journal Vol. 12, No. 4 ( 2021-10-03), p. 177-
    In: World Electric Vehicle Journal, MDPI AG, Vol. 12, No. 4 ( 2021-10-03), p. 177-
    Abstract: This paper presents a comparative analysis of two parallel hybrid magnet memory machines (PHMMMs) with different permanent magnet (PM) arrangements. The proposed machines are both geometrically characterized by a parallel U-shaped hybrid PM configuration and several q-axis magnetic barriers. The configurations and operating principles of the investigated machines are introduced firstly. The effect of magnet arrangements on the performance of the proposed machines is then evaluated with a simplified magnetic circuit model. Furthermore, the electromagnetic characteristics of the proposed machines are investigated and compared by the finite-element method (FEM). The experiments on one prototype are carried out to validate the FEM results.
    Type of Medium: Online Resource
    ISSN: 2032-6653
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2934699-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Remote Sensing, MDPI AG, Vol. 15, No. 18 ( 2023-09-11), p. 4461-
    Abstract: Peatlands in Southeast Asia have been undergoing extensive and rapid degradation in recent years. Interferometric Synthetic Aperture Radar (InSAR) technology has shown excellent performance in monitoring surface deformation. However, due to the characteristics of high vegetation cover and large dynamic changes in peatlands, it is difficult for classical InSAR technology to achieve satisfactory results. Therefore, an adaptive high coherence temporal subsets (HCTSs) small baseline subset (SBAS)-InSAR method is proposed in this paper, which captures the high coherence time range of pixels to establish adaptive temporal subsets and calculates the deformation results in corresponding time intervals, combining with the time-weighted strategy. Ninety Sentinel-1 SAR images (2019–2022) in South Sumatra province were processed based on the proposed method. The results showed that the average deformation rate of peatlands ranged from approximately −567 to 347 mm/year and was affected by fires and the changes in land cover. Besides, the dynamic changes of peatlands’ deformation rate a long time after fires were revealed, and the causes of changes were analyzed. Furthermore, the deformation results of the proposed method observed 2 to 127 times as many measurement points as the SBAS-InSAR method. Pearson’s r (ranged from 0.44 to 0.75) and Root Mean Square Error (ranged from 50 to 75 mm/year) were calculated to verify the reliability of the proposed method. Adaptive HCTSs SBAS-InSAR can be considered an efficient method for peatland degradation monitoring, which provides the foundation for investigating the mechanisms of peatland degradation and monitoring it in broader regions.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2513863-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Applied Sciences, MDPI AG, Vol. 9, No. 2 ( 2019-01-10), p. 238-
    Abstract: Machine learning plays an important role in building intrusion detection systems. However, with the increase of data capacity and data dimension, the ability of shallow machine learning is becoming more limited. In this paper, we propose a fuzzy aggregation approach using the modified density peak clustering algorithm (MDPCA) and deep belief networks (DBNs). To reduce the size of the training set and the imbalance of the samples, MDPCA is used to divide the training set into several subsets with similar sets of attributes. Each subset is used to train its own sub-DBNs classifier. These sub-DBN classifiers can learn and explore high-level abstract features, automatically reduce data dimensions, and perform classification well. According to the nearest neighbor criterion, the fuzzy membership weights of each test sample in each sub-DBNs classifier are calculated. The output of all sub-DBNs classifiers is aggregated based on fuzzy membership weights. Experimental results on the NSL-KDD and UNSW-NB15 datasets show that our proposed model has higher overall accuracy, recall, precision and F1-score than other well-known classification methods. Furthermore, the proposed model achieves better performance in terms of accuracy, detection rate and false positive rate compared to the state-of-the-art intrusion detection methods.
    Type of Medium: Online Resource
    ISSN: 2076-3417
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2704225-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Sensors, MDPI AG, Vol. 19, No. 11 ( 2019-06-02), p. 2528-
    Abstract: Intrusion detection systems play an important role in preventing security threats and protecting networks from attacks. However, with the emergence of unknown attacks and imbalanced samples, traditional machine learning methods suffer from lower detection rates and higher false positive rates. We propose a novel intrusion detection model that combines an improved conditional variational AutoEncoder (ICVAE) with a deep neural network (DNN), namely ICVAE-DNN. ICVAE is used to learn and explore potential sparse representations between network data features and classes. The trained ICVAE decoder generates new attack samples according to the specified intrusion categories to balance the training data and increase the diversity of training samples, thereby improving the detection rate of the imbalanced attacks. The trained ICVAE encoder is not only used to automatically reduce data dimension, but also to initialize the weight of DNN hidden layers, so that DNN can easily achieve global optimization through back propagation and fine tuning. The NSL-KDD and UNSW-NB15 datasets are used to evaluate the performance of the ICVAE-DNN. The ICVAE-DNN is superior to the three well-known oversampling methods in data augmentation. Moreover, the ICVAE-DNN outperforms six well-known models in detection performance, and is more effective in detecting minority attacks and unknown attacks. In addition, the ICVAE-DNN also shows better overall accuracy, detection rate and false positive rate than the nine state-of-the-art intrusion detection methods.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2052857-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages