Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Microbiology Society  (3)
  • 1
    Online Resource
    Online Resource
    Microbiology Society ; 2008
    In:  Journal of General Virology Vol. 89, No. 1 ( 2008-01-01), p. 1-47
    In: Journal of General Virology, Microbiology Society, Vol. 89, No. 1 ( 2008-01-01), p. 1-47
    Abstract: The interferon (IFN) system is an extremely powerful antiviral response that is capable of controlling most, if not all, virus infections in the absence of adaptive immunity. However, viruses can still replicate and cause disease in vivo , because they have some strategy for at least partially circumventing the IFN response. We reviewed this topic in 2000 [Goodbourn, S., Didcock, L. & Randall, R. E. (2000). J Gen Virol 81 , 2341–2364] but, since then, a great deal has been discovered about the molecular mechanisms of the IFN response and how different viruses circumvent it. This information is of fundamental interest, but may also have practical application in the design and manufacture of attenuated virus vaccines and the development of novel antiviral drugs. In the first part of this review, we describe how viruses activate the IFN system, how IFNs induce transcription of their target genes and the mechanism of action of IFN-induced proteins with antiviral action. In the second part, we describe how viruses circumvent the IFN response. Here, we reflect upon possible consequences for both the virus and host of the different strategies that viruses have evolved and discuss whether certain viruses have exploited the IFN response to modulate their life cycle (e.g. to establish and maintain persistent/latent infections), whether perturbation of the IFN response by persistent infections can lead to chronic disease, and the importance of the IFN system as a species barrier to virus infections. Lastly, we briefly describe applied aspects that arise from an increase in our knowledge in this area, including vaccine design and manufacture, the development of novel antiviral drugs and the use of IFN-sensitive oncolytic viruses in the treatment of cancer.
    Type of Medium: Online Resource
    ISSN: 0022-1317 , 1465-2099
    RVK:
    RVK:
    Language: English
    Publisher: Microbiology Society
    Publication Date: 2008
    detail.hit.zdb_id: 2007065-2
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Microbiology Society ; 1999
    In:  Journal of General Virology Vol. 80, No. 8 ( 1999-08-01), p. 2205-2209
    In: Journal of General Virology, Microbiology Society, Vol. 80, No. 8 ( 1999-08-01), p. 2205-2209
    Abstract: Human herpesvirus-8 (HHV-8), a gammaherpesvirus that is thought to be the viral aetiologic agent of Kaposi’s sarcoma and primary effusion lymphoma, encodes a homologue to cellular interferon regulatory factors (IRFs). The HHV-8 IRF homologue (vIRF; ORF K9) has previously been shown to inhibit gene induction by interferons and IRF-1 and to transform NIH3T3 cells or Rat-1 cells. Additionally, expression of antisense to vIRF in BCBL-1 cells results in the repression of certain HHV-8 genes, suggesting that vIRF may also positively regulate gene expression. We demonstrate that vIRF activates transcription when directed to DNA by the GAL4 DNA-binding domain. GAL-vIRF truncation constructs that individually are incapable of activating transcription can cooperate in transactivation when coexpressed in HeLa cells, suggesting that multiple regions of vIRF are involved in transactivation. These studies broaden the potential mechanisms of action of vIRF to include transcriptional activation as well as transcriptional repression.
    Type of Medium: Online Resource
    ISSN: 0022-1317 , 1465-2099
    RVK:
    RVK:
    Language: English
    Publisher: Microbiology Society
    Publication Date: 1999
    detail.hit.zdb_id: 2007065-2
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of General Virology, Microbiology Society, Vol. 88, No. 11 ( 2007-11-01), p. 3002-3006
    Abstract: Classical swine fever virus (CSFV) is a member of the genus Pestivirus in the family Flaviviridae . The N pro product of CSFV targets the host's innate immune response and can prevent the production of type I interferon (IFN). The mechanism by which CSFV orchestrates this inhibition was investigated and it is shown that, like the related pestivirus bovine viral diarrhea virus (BVDV), this involves the N pro protein targeting interferon regulatory factor-3 (IRF-3) for degradation by proteasomes and thus preventing IRF-3 from activating transcription from the IFN- β promoter. Like BVDV, the steady-state levels of IRF-3 mRNA are not reduced markedly by CSFV infection or N pro overexpression. Moreover, IFN- α stimulation of CSFV-infected cells induces the antiviral protein MxA, indicating that, as in BVDV-infected cells, the JAK/STAT pathway is not targeted for inhibition.
    Type of Medium: Online Resource
    ISSN: 0022-1317 , 1465-2099
    RVK:
    RVK:
    Language: English
    Publisher: Microbiology Society
    Publication Date: 2007
    detail.hit.zdb_id: 2007065-2
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages