Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press (OUP)  (2)
Type of Medium
Publisher
  • Oxford University Press (OUP)  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2019
    In:  Bioinformatics Vol. 35, No. 5 ( 2019-03-01), p. 877-879
    In: Bioinformatics, Oxford University Press (OUP), Vol. 35, No. 5 ( 2019-03-01), p. 877-879
    Abstract: The 3D genome architecture influences the regulation of genes by facilitating chromatin interactions between distal cis-regulatory elements and gene promoters. We implement Cross Cell-type Correlation based on DNA accessibility (C3D), a customizable computational tool that predicts chromatin interactions using an unsupervised algorithm that utilizes correlations in chromatin measurements, such as DNaseI hypersensitivity signals. Results C3D accurately predicts 32.7%, 18.3% and 24.1% of interactions, validated by ChIA-PET assays, between promoters and distal regions that overlie DNaseI hypersensitive sites in K562, MCF-7 and GM12878 cells, respectively. Availability and implementation Source code is open-source and freely available on GitHub (https://github.com/LupienLabOrganization/C3D) under the GNU GPLv3 license. C3D is implemented in Bash and R; it runs on any platform with Bash (≥4.0), R (≥3.1.1) and BEDTools (≥2.19.0). It requires the following R packages: GenomicRanges, Sushi, data.table, preprocessCore and dynamicTreeCut. Supplementary information Supplementary data are available at Bioinformatics online.
    Type of Medium: Online Resource
    ISSN: 1367-4803 , 1367-4811
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 1468345-3
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2015
    In:  Bioinformatics Vol. 31, No. 18 ( 2015-09-15), p. 3057-3059
    In: Bioinformatics, Oxford University Press (OUP), Vol. 31, No. 18 ( 2015-09-15), p. 3057-3059
    Abstract: Motivation: Detection of allelic imbalances in ChIP-Seq reads is a powerful approach to identify functional non-coding single nucleotide variants (SNVs), either polymorphisms or mutations, which modulate the affinity of transcription factors for chromatin. We present ABC, a computational tool that identifies allele-specific binding of transcription factors from aligned ChIP-Seq reads at heterozygous SNVs. ABC controls for potential false positives resulting from biases introduced by the use of short sequencing reads in ChIP-Seq and can efficiently process a large number of heterozygous SNVs. Results: ABC successfully identifies previously characterized functional SNVs, such as the rs4784227 breast cancer risk associated SNP that modulates the affinity of FOXA1 for the chromatin. Availability and implementation: The code is open-source under an Artistic-2.0 license and versioned on GitHub (https://github.com/mlupien/ABC/). ABC is written in PERL and can be run on any platform with both PERL (≥5.18.1) and R (≥3.1.1) installed. The script requires the PERL Statistics::R module. Contact:  mlupien@uhnres.utoronto.ca Supplementary information:  Supplementary data are available at Bioinformatics online.
    Type of Medium: Online Resource
    ISSN: 1367-4811 , 1367-4803
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2015
    detail.hit.zdb_id: 1468345-3
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages