Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press (OUP)  (6)
Type of Medium
Publisher
  • Oxford University Press (OUP)  (6)
Language
Years
  • 1
    In: Burns & Trauma, Oxford University Press (OUP), Vol. 7 ( 2019-12-01)
    Abstract: Joint contracture is the major clinical complication in burn patients, especially, the severe burn patients. This study aimed to investigate the number and severity of joint contractures in patients with burns affecting greater than or equal to 50% of the total body surface area (TBSA) undergoing early rehabilitation in a burn intensive care unit (BICU). Methods We analyzed burn patients with burns affecting greater than or equal to 50% of the TBSA admitted to a BICU who received early rehabilitation within 7 days post-injury from January 2011 to December 2015. Demographic and medical information was collected. The range of motion (ROM) of different joints was measured 1 month post-admission. Spearman’s correlation coefficient and logistic regression analysis was used to determine predictors of the presence and severity of contractures. Result The average affected TBSA of the included burn patients was 67.4%, and the average length of stay in the BICU was 46.2 ± 28.8 days. One hundred and one of 108 burn patients (93.5%) developed at least one joint contracture. The ROM in 67.9% of the affected joints was mildly limited. The majority of contractures in severe burn patients were mild (37.7%) or moderate (33.2%). The wrist was the most commonly affected joint (18.2%), followed by the shoulder, ankle, hip, knee, and elbow. A predictor of the presence of contractures was the length of hospital stay (p = 0.049). The severe contracture was related to the area of full-thickness burns, the strict bed rest time, and the duration of rehabilitation in BICU. The length of rehabilitation stay (days) in patients with moderate contracture is 54.5% longer than that in severe contracture (p = 0.024) Conclusion During the long stay in BICU, the length of rehabilitation stay in a BICU could decrease the severity of contractures from severe to moderate in the patients with equal to 50% of the TBSA. Hence, this research reveals the important role of early rehabilitation interventions in severe burn patients.
    Type of Medium: Online Resource
    ISSN: 2321-3876
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 2775996-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Regenerative Biomaterials, Oxford University Press (OUP), Vol. 9 ( 2022-04-08)
    Abstract: The tumor microenvironment with overexpressed hydrogen peroxide (H2O2) and reinforced antioxidative system (glutathione, GSH) becomes a double-edged sword for the accessibility of nano-therapy. Since reactive oxygen species (ROS) are easily quenched by the developed antioxidative network, ROS-based treatments such as chemodynamic therapy (CDT) and radiotherapy (RT) for killing cancer cells are severely attenuated. To overcome such limitations, a bioactive nanosphere system is developed to regulate intracellular oxidative stress for enhanced radio-chemodynamic combination therapy by using bovine serum albumin (BSA) based bioactive nanospheres that are BSA assembled with in situ generated copper-bismuth sulfide nanodots and diallyl trisulfide (DATS). The copper-bismuth sulfide nanodots react with H2O2 to produce •OH and release Cu2+. Then, the Cu2+ further depletes GSH to generate Cu+ for more •OH generation in the way of Fenton-like reaction. Such a cascade reaction can initiate •OH generation and GSH consumption to realize CDT. The elevation of ROS triggered by the DATS from BBCD nanospheres further augments the breaking of redox balance for the increased oxidative stress in 4T1 cells. With the sensitization of increased oxidative stress and high Z element Bi, an enhanced radio-chemodynamic combination therapy is achieved. The current work provides an enhanced radio-chemodynamic combination treatment for the majority of solid tumors by using the co-assembled bioactive nanospheres as an amplifier of oxidative stress.
    Type of Medium: Online Resource
    ISSN: 2056-3426
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2799042-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2015
    In:  Burns & Trauma Vol. 3 ( 2015-12-01)
    In: Burns & Trauma, Oxford University Press (OUP), Vol. 3 ( 2015-12-01)
    Abstract: A hypertrophic scar is a unique fibrotic disease that only exists in humans. Despite advances in burn care and rehabilitation, as well as progress in the management during these decades, the hypertrophic scar remains hard to cure following surgical methods and drugs for treatment. In this study, we are looking forward to finding the multitude of possible traumatic mechanisms and the underlying molecular signal ways in the formation of the hypertrophic scar. Methods We used isobaric tags for relative and absolute quantitation (iTRAQ) labeling technology, followed by high-throughput 2D LC-MS/MS, to determine relative quantitative differential proteins between the hypertrophic scar and normal skin tissue. Results A total of 3166 proteins were identified with a high confidence (≥95 % confidence). And, a total of 89 proteins were identified as the differential proteins between the hypertrophic scar and normal skin, among which 41 proteins were up-regulated and 48 proteins were down-regulated in the hypertrophic scar. GO-Analysis indicated the up-regulated proteins were involved in extracellular matrix, whereas the down-regulated proteins were involved in dynamic junction and structural molecule activity. Conclusions In our study, we demonstrate 89 proteins present differently in the hypertrophic scar compared to normal skin by iTRAQ technology, which might indicate the pathologic process of hypertrophic scar formation and guide us to propose new strategies against the hypertrophic scar.
    Type of Medium: Online Resource
    ISSN: 2321-3876
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2015
    detail.hit.zdb_id: 2775996-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2017
    In:  Burns & Trauma Vol. 5 ( 2017-12-01)
    In: Burns & Trauma, Oxford University Press (OUP), Vol. 5 ( 2017-12-01)
    Abstract: Abnormal wound healing is likely to induce scar formation, leading to dysfunction, deformity, and psychological trauma in burn patients. Despite the advancement of medical care treatment, scar contracture in burn patients remains a challenge. Myofibroblasts play a key role in scar contracture. It has been demonstrated that myofibroblasts, as well as inflammatory cells, fibroblasts, endothelial cells, and epithelial cells, secrete transforming growth factor-β1 (TGF-β1) and other cytokines, which can promote persistent myofibroblast activation via a positive regulation loop. In addition to the cellular contribution, the microenvironments, including the mechanical tension and integrin family, are also involved in scar contracture. Most recently, eukaryotic initiation factor 6 (eIF6), an upstream regulator of TGF-β1, has been demonstrated to be involved in myofibroblast differentiation and contraction in both in vitro fibroblast-populated collagen lattice (FPCL) and in vivo external mechanical stretch models. Moreover, the data showed that P311 could induce the transdifferentiation of epidermal stem cells to myofibroblasts by upregulating TGF-β1 expression, which mediated myofibroblast contraction. In this review, we briefly described the most current progress on the biological function of myofibroblasts in scar contracture and subsequently summarized the molecular events that initiated contracture. This would help us better understand the molecular basis of scar contracture as well as to find a comprehensive strategy for preventing/managing scar contracture.
    Type of Medium: Online Resource
    ISSN: 2321-3876
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2017
    detail.hit.zdb_id: 2775996-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: National Science Review, Oxford University Press (OUP), Vol. 10, No. 8 ( 2023-06-28)
    Abstract: Biophysical cues of the cellular microenvironment tremendously influence cell behavior by mechanotransduction. However, it is still unclear how cells sense and transduce the mechanical signals from 3D geometry to regulate cell function. Here, the mechanotransduction of human mesenchymal stem cells (MSCs) triggered by 3D micropatterns and its effect on the paracrine of MSCs are systematically investigated. Our findings show that 3D micropattern force could influence the spatial reorganization of the cytoskeleton, leading to different local forces which mediate nucleus alteration such as orientation, morphology, expression of Lamin A/C and chromatin condensation. Specifically, in the triangular prism and cuboid micropatterns, the ordered F-actin fibers are distributed over and fully transmit compressive forces to the nucleus, which results in nuclear flattening and stretching of nuclear pores, thus enhancing the nuclear import of YES-associated protein (YAP). Furthermore, the activation of YAP significantly enhances the paracrine of MSCs and upregulates the secretion of angiogenic growth factors. In contrast, the fewer compressive forces on the nucleus in cylinder and cube micropatterns cause less YAP entering the nucleus. The skin repair experiment provides the first in vivo evidence that enhanced MSCs paracrine by 3D geometry significantly promotes tissue regeneration. The current study contributes to understanding the in-depth mechanisms of mechanical signals affecting cell function and provides inspiration for innovative design of biomaterials.
    Type of Medium: Online Resource
    ISSN: 2095-5138 , 2053-714X
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2745465-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Stem Cells, Oxford University Press (OUP), Vol. 35, No. 7 ( 2017-07-01), p. 1760-1772
    Abstract: Bre is a conserved cellular protein expressed in various tissues. Its major function includes DNA damage repair and anti-apoptosis. Recent studies indicate that Bre is potentially involved in stem cell differentiation although pathophysiological significance along with the molecular mechanisms is still unclear. Here, we report that Bre protein was substantially expressed in the bone tissue and its expression was highly upregulated during the osteogenic differentiation. To test a hypothesis that Bre plays functional roles in the process of osteogenic differentiation, we examined the expression of Bre in an osteoporosis mouse model. Compared with the normal bone tissue, Bre expression in osteoporotic bone was also significantly reduced. Moreover, knockdown of Bre in the mouse bone marrow mesenchymal cells significantly reduced the expression of osteogenic marker genes, the alkaline phosphatase activity, and the mineralization capacity, while overexpression of Bre greatly promoted the osteogenesis both in vitro and in vivo. Interestingly, we founded that knockdown of Bre led to activation of the p53 signaling pathways exhibited by increased p53, p21, and Mdm2. However, when we inhibited the p53 by siRNA silencing or pifithrin-α, the impaired osteogenesis caused by Bre knockdown was greatly restored. Finally, we found that Bre promoted the Mdm2-mediated p53 ubiquitination and degradation by physically interacting with p53. Taken together, our results revealed a novel function of Bre in osteoblast differentiation through modulating the stability of p53.
    Type of Medium: Online Resource
    ISSN: 1066-5099 , 1549-4918
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2017
    detail.hit.zdb_id: 2030643-X
    detail.hit.zdb_id: 1143556-2
    detail.hit.zdb_id: 605570-9
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages