Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Portland Press Ltd.  (2)
Type of Medium
Publisher
  • Portland Press Ltd.  (2)
Language
Years
  • 1
    In: Bioscience Reports, Portland Press Ltd., Vol. 37, No. 2 ( 2017-04-30)
    Abstract: Oral tongue squamous cell carcinoma (OTSCC) is the most common type of oral carcinomas. However, the molecular mechanism by which OTSCC developed is not fully identified. Stromal interaction molecule 1 (STIM1) is a transmembrane protein, mainly located in the endoplasmic reticulum (ER). STIM1 is involved in several types of cancers. Here, we report that STIM1 contributes to the development of human OTSCC. We knocked down STIM1 in OTSCC cell line Tca-8113 with lentivirus-mediated shRNA and found that STIM1 knockdown repressed the proliferation of Tca-8113 cells. In addition, we also showed that STIM1 deficiency reduced colony number of Tca-8113 cells. Knockdown of STIM1 repressed cells to enter M phase of cell cycle and induced cellular apoptosis. Furthermore, we performed microarray and bioinformatics analysis and found that STIM1 was associated with p53 and MAPK pathways, which may contribute to the effects of STIM1 on cell growth, cell cycle, and apoptosis. Finally, we confirmed that STIM1 controlled the expression of MDM2, cyclin-dependent kinase 4 (CDK4), and growth arrest and DNA damage inducible α (GADD45A) in OTSCC cells. In conclusion, we provide evidence that STIM1 contributes to the development of OTSCC partially through regulating p53 and MAPK pathways to promote cell cycle and survival.
    Type of Medium: Online Resource
    ISSN: 0144-8463 , 1573-4935
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 2017
    detail.hit.zdb_id: 2014993-1
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Bioscience Reports, Portland Press Ltd., Vol. 38, No. 4 ( 2018-08-31)
    Abstract: The incidence of global head and neck cancer has increased markedly in the last 10 years, and its prognosis is poor, which seriously endangers people’s life and health. At present, there are few studies on its pathogenesis. Golgi integral membrane protein 4 (GOLIM4) is a major member of the Golgi apparatus transporter complex, and its role in tumor is unclear. The present study found that GOLIM4 was the key target protein downstream of stromal interaction molecule 1 (STIM1), which can inhibit the proliferation of head and neck cancer cells FaDu (human pharyngeal squamous carcinoma cell) and Tca-8113 (human tongue squamous carcinoma cell) with knockdown of GOLIM4 by lentivirus. And the decreased expression of GOLIM4 induced cellular apoptosis. Further experiments revealed that FaDu cell cycle progression was changed after GOLIM4 silence, G1 phase arrest and the number of G2/M cells decreased significantly. It was also found that the cells in S-phase decreased markedly after GOLIM4 was knocked down compared with the control group by 5-bromo-2′-deoxyuridine (BrdU) incorporation experiment. In conclusion, we found that GOLIM4, as the target gene downstream of STIM1, inhibited the proliferation of head and neck cancer, promoted apoptosis, and regulated cell cycle progression, and GOLIM4 is a novel oncogene in head and neck cancer and might help in developing promising targetted therapies for head and neck cancer patients.
    Type of Medium: Online Resource
    ISSN: 0144-8463 , 1573-4935
    Language: English
    Publisher: Portland Press Ltd.
    Publication Date: 2018
    detail.hit.zdb_id: 2014993-1
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages