Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Proceedings of the National Academy of Sciences  (2)
Type of Medium
Publisher
  • Proceedings of the National Academy of Sciences  (2)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1999
    In:  Proceedings of the National Academy of Sciences Vol. 96, No. 9 ( 1999-04-27), p. 5107-5110
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 96, No. 9 ( 1999-04-27), p. 5107-5110
    Abstract: Lake Malawi contains a flock of 〉 500 species of cichlid fish that have evolved from a common ancestor within the last million years. The rapid diversification of this group has been attributed to morphological adaptation and to sexual selection, but the relative timing and importance of these mechanisms is not known. A phylogeny of the group would help identify the role each mechanism has played in the evolution of the flock. Previous attempts to reconstruct the relationships among these taxa using molecular methods have been frustrated by the persistence of ancestral polymorphisms within species. Here we describe results from a DNA fingerprinting technique that overcomes this problem by examining thousands of polymorphisms distributed across the genome. The resulting dendrogram averages the evolutionary history of thousands of genes and should accurately reflect the evolutionary history of these species. Our tree resolves relationships among closely related Lake Malawi cichlids and provides insights into the pattern of speciation in this group. We demonstrate that adaptive divergence in trophic morphology played an important role during the early history of the lake. Subsequent species diversity has arisen with little change in trophic morphology, which suggests that other forces are responsible for the continued speciation of these fishes.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1999
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1994
    In:  Proceedings of the National Academy of Sciences Vol. 91, No. 20 ( 1994-09-27), p. 9426-9430
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 91, No. 20 ( 1994-09-27), p. 9426-9430
    Abstract: The cDNA for a membrane-associated cGMP-dependent protein kinase (cGK II) was cloned from rat intestine using reverse transcriptase PCR and oligonucleotide primers encoding two conserved motifs of known cGMP-dependent protein kinases and subsequently by screening a rat intestine cDNA library. A full-length clone encodes a protein of 761 amino acids with an estimated size of 87 kDa. Sequences of eight peptides from purified pig intestinal mucosa cGK II were found in the derived amino acid sequence of this clone, identifying it as rat intestinal cGK II. Phylogenetic analysis showed that rat intestinal cGK II is less related to mammalian cGK I than to the Drosophila DG1 gene product and most closely related to a recently cloned mouse brain CGKII isoform. Like several other cGK sequences, that of cGK II contained a leucine/isoleucine heptad repeat motif that has been implicated in dimer formation in cGK I. Expression of cGK II cDNA in HEK 293 cells followed by subcellular fractionation revealed cGK II localization in the cell particulate fraction, consistent with the membrane association of endogenous rat cGK II. On Northern blots, the major cGK II poly(A) RNA form was 4.8 kb, with minor forms of 6.2 and 3.1 kb. The cGK II RNA was highly expressed in rat intestinal mucosa and was 20 times less abundant in rat brain and kidney. The localization of endogenous cGK II RNA in rat small intestine was shown by in situ hybridization to be in villous epithelial cells and to some extent in crypt cells.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1994
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages