Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Proceedings of the National Academy of Sciences  (4)
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 118, No. 16 ( 2021-04-20)
    Abstract: Microscale needle-electrode devices offer neuronal signal recording capability in brain tissue; however, using needles of smaller geometry to minimize tissue damage causes degradation of electrical properties, including high electrical impedance and low signal-to-noise ratio (SNR) recording. We overcome these limitations using a device assembly technique that uses a single needle-topped amplifier package, called STACK, within a device of ∼1 × 1 mm 2 . Based on silicon (Si) growth technology, a 〈 3-µm-tip-diameter, 400-µm-length needle electrode was fabricated on a Si block as the module. The high electrical impedance characteristics of the needle electrode were improved by stacking it on the other module of the amplifier. The STACK device exhibited a voltage gain of 〉 0.98 (−0.175 dB), enabling recording of the local field potential and action potentials from the mouse brain in vivo with an improved SNR of 6.2. Additionally, the device allowed us to use a Bluetooth module to demonstrate wireless recording of these neuronal signals; the chronic experiment was also conducted using STACK-implanted mice.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2007
    In:  Proceedings of the National Academy of Sciences Vol. 104, No. 26 ( 2007-06-26), p. 10865-10870
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 104, No. 26 ( 2007-06-26), p. 10865-10870
    Abstract: The analysis of cell signaling requires the rapid and selective manipulation of protein function. We have synthesized photoswitches that covalently modify target proteins and reversibly present and withdraw a ligand from its binding site due to photoisomerization of an azobenzene linker. We describe here the properties of a glutamate photoswitch that controls an ion channel in cells. Affinity labeling and geometric constraints ensure that the photoswitch controls only the targeted channel, and enables spatial patterns of light to favor labeling in one location over another. Photoswitching to the activating state places a tethered glutamate at a high (millimolar) effective local concentration near the binding site. The fraction of active channels can be set in an analog manner by altering the photostationary state with different wavelengths. The bistable photoswitch can be turned on with millisecond-long pulses at one wavelength, remain on in the dark for minutes, and turned off with millisecond long pulses at the other wavelength, yielding sustained activation with minimal irradiation. The system provides rapid, reversible remote control of protein function that is selective without orthogonal chemistry.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2007
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2009
    In:  Proceedings of the National Academy of Sciences Vol. 106, No. 16 ( 2009-04-21), p. 6814-6819
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 106, No. 16 ( 2009-04-21), p. 6814-6819
    Abstract: Photoswitched tethered ligands (PTLs) can be used to remotely control protein function with light. We have studied the geometric and conformational factors that determine the efficacy of PTL gating in the ionotropic glutamate receptor iGluR6 using a family of photoiosomerizable MAG (maleimide-azobenzene-glutamate) PTLs that covalently attach to the clamshell ligand-binding domain. Experiments and molecular dynamics simulations of the modified proteins show that optical switching depends on 2 factors: ( i ) the relative occupancy of the binding pocket in the 2 photoisomers of MAG and ( ii ) the degree of clamshell closure that is possible given the disposition of the MAG linker. A synthesized short version of MAG turns the channel on in either the cis or trans state, depending on the point of attachment. This yin/yang optical control makes it possible for 1 wavelength of light to elicit action potentials in one set of neurons, while deexciting a second set of neurons in the same preparation, whereas a second wavelength has the opposite effect. The ability to generate opposite responses with a single PTL and 2 versions of a target channel, which can be expressed in different cell types, paves the way for engineering opponency in neurons that mediate opposing functions.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2009
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2006
    In:  Proceedings of the National Academy of Sciences Vol. 103, No. 10 ( 2006-03-07), p. 3716-3721
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 103, No. 10 ( 2006-03-07), p. 3716-3721
    Abstract: Three mammalian Period ( Per ) genes, termed Per1 , Per2 , and Per3 , have been identified as structural homologues of the Drosophila circadian clock gene, period ( per ). The three Per genes are rhythmically expressed in the suprachiasmatic nucleus (SCN), the central circadian pacemaker in mammals. The phases of peak mRNA levels for the three Per genes in the SCN are slightly different. Light sequentially induces the transcripts of Per1 and Per2 but not of Per3 in mice. These data and others suggest that each Per gene has a different but partially redundant function in mammals. To elucidate the function of Per1 in the circadian system in vivo , we generated two transgenic rat lines in which the mouse Per1 ( mPer1 ) transcript was constitutively expressed under the control of either the human elongation factor-1α ( EF-1 α) or the rat neuron-specific enolase ( NSE ) promoter. The transgenic rats exhibited an ≈0.6–1.0-h longer circadian period than their wild-type siblings in both activity and body temperature rhythms. Entrainment in response to light cycles was dramatically impaired in the transgenic rats. Molecular analysis revealed that the amplitudes of oscillation in the rat Per1 ( rPer1 ) and rat Per2 ( rPer2 ) mRNAs were significantly attenuated in the SCN and eyes of the transgenic rats. These results indicate that either the level of Per1 , which is raised by overexpression, or its rhythmic expression, which is damped or abolished in over expressing animals, is critical for normal entrainment of behavior and molecular oscillation of other clock genes.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2006
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages