Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Seismological Society of America (SSA)  (2)
Type of Medium
Publisher
  • Seismological Society of America (SSA)  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    Seismological Society of America (SSA) ; 1981
    In:  Bulletin of the Seismological Society of America Vol. 71, No. 4 ( 1981-08-01), p. 1333-1349
    In: Bulletin of the Seismological Society of America, Seismological Society of America (SSA), Vol. 71, No. 4 ( 1981-08-01), p. 1333-1349
    Abstract: The effect of alluvium on strong ground motion can be seen by comparing two strong-motion records of the Coyote Lake, California, earthquake of 6 August 1979 (ML = 5.9). One record at a site on Franciscan bedrock had a peak horizontal acceleration of 0.13 g and a peak horizontal velocity of 10 cm/sec. The other, at a site 2 km distant on 180 meters of Quaternary alluvium overlying Franciscan, had values of 0.26 g and 32 cm/sec, amplifications by factors of 2 and 3. Horizontal motions computed at the alluvial site for a linear plane-layered model based on measured P and S velocities show reasonably good agreement in shape with the observed motions, but the observed peak amplitudes are greater by a factor of about 1.25 in acceleration and 1.8 in velocity. About 15 per cent of the discrepancy in acceleration and 20 per cent in velocity can be attributed to the difference in source distance; the remainder may represent focusing by refraction at a bedrock surface concave upward. There is no clear evidence of nonlinear soil response. Fourier spectral ratios between motions observed on bedrock and alluvium show good agreement with ratios predicted from the linear model. In particular, the observed frequency of the fundamental peak in the amplification spectrum agrees with the computed value, indicating that no significant nonlinearity occurs in the secant shear modulus. Computations show that nonlinear models are compatible with the data if values of the coefficient of dynamic shear strength in terms of vertical effective stress are in the range of 0.5 to 1.0 or greater. The data illustrate that site amplification may be less a matter of resonance involving reinforcing multiple reflections, and more the simple effect of the low near-surface velocity. Application of traditional seismological theory leads to the conclusion that the site amplification for peak horizontal velocity is approximately proportional to the reciprocal of the square root of the product of density and shear-wave velocity.
    Type of Medium: Online Resource
    ISSN: 1943-3573 , 0037-1106
    Language: English
    Publisher: Seismological Society of America (SSA)
    Publication Date: 1981
    detail.hit.zdb_id: 2065447-9
    SSG: 16,13
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Seismological Society of America (SSA) ; 1994
    In:  Bulletin of the Seismological Society of America Vol. 84, No. 1 ( 1994-02-01), p. 76-90
    In: Bulletin of the Seismological Society of America, Seismological Society of America (SSA), Vol. 84, No. 1 ( 1994-02-01), p. 76-90
    Abstract: We used shear waves, generated by an air-powered source at the ground surface and recorded in a borehole, to estimate the shear-wave quality factor at strong-motion station Gilroy no. 2. We find similar values of Q using both the decay of the spectra with depth and the slope of the spectral ratio at two depths; we find no evidence of a frequency dependence of Q. The mean value of Q over the depth range 10 to 115 m is close to 10. The use of this value over the depth of the borehole and the observed travel time of 0.358 sec gives a cumulative attenuation factor t* of 0.036 sec for the upper 180 m of the Quaternary alluvium. This is comparable to the differential decay between Gilroy no. 2 and a rock site 1.9 km away (Gilroy no. 1), as measured from the decay of the high-frequency spectra of accelerograms from large earthquakes, plotted on a log-linear scale: t* = 0.05, 0.04, and 0.03 sec for the 1979 Coyote Lake, 1984 Morgan Hill, and 1989 Loma Prieta earthquakes, respectively. The similarity between the attenuations measured from the low-strain surface source and those from the larger amplitude earthquake sources suggests that increases of damping due to nonlinear wave propagation effects are limited.
    Type of Medium: Online Resource
    ISSN: 1943-3573 , 0037-1106
    Language: English
    Publisher: Seismological Society of America (SSA)
    Publication Date: 1994
    detail.hit.zdb_id: 2065447-9
    SSG: 16,13
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages