Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • The American Association of Immunologists  (3)
  • 1
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 171, No. 4 ( 2003-08-15), p. 1722-1731
    Abstract: We report that CCR3 is not expressed on freshly isolated peripheral and germinal B cells, but is up-regulated after stimulation with IL-2 and IL-4 (∼98% CCR3+). Ligation of CCR3 by eotaxin/chemokine ligand (CCL) 11 induces apoptosis in IL-2- and IL-4-stimulated primary CD19+ (∼40% apoptotic cells) B cell cultures as well as B cell lines, but has no effect on chemotaxis or cell adhesion. Freshly isolated B cells express low levels of CD95 and CD95 ligand (CD95L) (19 and 21%, respectively). Expression is up-regulated on culture in the presence of a combination of IL-2, IL-4, and eotaxin/CCL11 (88% CD95 and 84% CD95L). We therefore propose that ligation of such newly induced CCR3 on peripheral and germinal B cells by eotaxin/CCL11 leads to the enhanced levels of CD95 and CD95L expression. Ligation of CD95 by its CD95L expressed on neigboring B cells triggers relevant death signaling pathways, which include an increase in levels of Bcl-2 expression, its functional activity, and the release of cytochrome c from the mitochondria into the cytosol. These events initiate a cascade of enzymatic processes of the caspase family, culminating in programmed cell death. Interaction between CCR3 and eotaxin/CCL11 may, besides promoting allergic reactions, drive activated B cells to apoptosis, thereby reducing levels of Ig production, including IgE, and consequently limit the development of the humoral immune response. The apoptotic action of eotaxin/CCL11 suggests a therapeutic modality in the treatment of B cell lymphoma.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2003
    detail.hit.zdb_id: 1475085-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 180, No. 1 ( 2008-01-01), p. 426-437
    Abstract: Evidence obtained from both animal models and humans suggests that T cells specific for HSV-1 and HSV-2 glycoprotein D (gD) contribute to protective immunity against herpes infection. However, knowledge of gD-specific human T cell responses is limited to CD4+ T cell epitopes, with no CD8+ T cell epitopes identified to date. In this study, we screened the HSV-1 gD amino acid sequence for HLA-A*0201-restricted epitopes using several predictive computational algorithms and identified 10 high probability CD8+ T cell epitopes. Synthetic peptides corresponding to four of these epitopes, each nine to 10 amino acids in length, exhibited high-affinity binding in vitro to purified human HLA-A*0201 molecules. Three of these four peptide epitopes, gD53–61, gD70–78, and gD278–286, significantly stabilized HLA-A*0201 molecules on T2 cell lines and are highly conserved among and between HSV-1 and HSV-2 strains. Consistent with this, in 33 sequentially studied HLA-A*0201-positive, HSV-1-seropositive, and/or HSV-2-seropositive healthy individuals, the most frequent and robust CD8+ T cell responses, assessed by IFN-γ ELISPOT, CD107a/b cytotoxic degranulation, and tetramer assays, were directed mainly against gD53–61, gD70–78, and gD278–286 epitopes. In addition, CD8+ T cell lines generated by gD53–61, gD70–78, and gD278–286 peptides recognized infected target cells expressing native gD. Lastly, CD8+ T cell responses specific to gD53–61, gD70–78, and gD278–286 epitopes were induced in HLA-A*0201 transgenic mice following ocular or genital infection with either HSV-1 or HSV-2. The functional gD CD8+ T cell epitopes described herein are potentially important components of clinical immunotherapeutic and immunoprophylactic herpes vaccines.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2008
    detail.hit.zdb_id: 1475085-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 183, No. 1 ( 2009-07-01), p. 370-380
    Abstract: Immunodominance limits the TCR diversity of specific antiviral CD8 T cell responses elicited by vaccination or infection. To prime multispecific T cell responses, we constructed DNA vaccines that coexpress chimeric, multidomain Ags (with CD8 T cell-defined epitopes of the hepatitis B virus (HBV) surface (S), core (C), and polymerase (Pol) proteins and/or the OVA Ag as stress protein-capturing fusion proteins. Priming of mono- or multispecific, HLA-A*0201- or Kb-restricted CD8 T cell responses by these DNA vaccines differed. Kb/OVA257–264- and Kb/S190–197-specific CD8 T cell responses did not allow priming of a Kb/C93–100-specific CD8 T cell response in mice immunized with multidomain vaccines. Tolerance to the S- Ag in transgenic Alb/HBs mice (that express large amounts of transgene-encoded S- Ag in the liver) facilitated priming of subdominant, Kb/C93–100-specific CD8 T cell immunity by multidomain Ags. The “weak” (i.e., easily suppressed) Kb/C93–100-specific CD8 T cell response was efficiently elicited by a HBV core Ag-encoding vector in 1.4HBV-Smut tg mice (that harbor a replicating HBV genome that produces HBV surface, core, and precore Ag in the liver). Kb/C93–100-specific CD8 T cells accumulated in the liver of vaccinated 1.4HBV-Smut transgenic mice where they suppressed HBV replication. Subdominant epitopes in vaccines can hence prime specific CD8 T cell immunity in a tolerogenic milieu that delivers specific antiviral effects to HBV-expressing hepatocytes.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2009
    detail.hit.zdb_id: 1475085-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages