Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Medical Virology, Wiley, Vol. 95, No. 3 ( 2023-03)
    Abstract: Numerous emerging severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) Omicron subvariants have shown significant immune evasion capacity and caused a large number of infections, as well as vaccine‐breakthrough infections, especially in elderly populations. Recently emerged Omicron XBB was derived from the BA.2 lineage, but bears a distinct mutant profile in its spike (S) protein. In this study, we found that Omicron XBB S protein drove more efficient membrane‐fusion kinetics on human lung‐derived cells (Calu‐3). Considering the high susceptibility of the elderly to the current Omicron pandemic, we performed a comprehensive neutralization assessment of elderly convalescent or vaccine sera against XBB infection. We found that the sera from elderly convalescent patients who experienced with BA.2 infection or breakthrough infection potently inhibited BA.2 infection, but showed significantly reduced efficacy against XBB. Moreover, recently emerged XBB.1.5 subvariant also showed more significant resistance to the convalescent sera of BA.2‐ or BA.5‐infected elderly. On the other hand, we found that the pan‐CoV fusion inhibitors EK1 and EK1C4 can potently block either XBB‐S‐ or XBB.1.5‐S‐mediated fusion process and viral entry. Moreover, EK1 fusion inhibitor showed potent synergism when combined with convalescent sera of BA.2‐ or BA.5‐infected patients against XBB and XBB.1.5 infection, further indicating that EK1‐based pan‐CoV fusion inhibitors are promising candidates for development as clinical antiviral agents to combat the Omicron XBB subvariants.
    Type of Medium: Online Resource
    ISSN: 0146-6615 , 1096-9071
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 752392-0
    detail.hit.zdb_id: 1475090-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Oncogene, Springer Science and Business Media LLC, Vol. 41, No. 23 ( 2022-06-03), p. 3222-3238
    Type of Medium: Online Resource
    ISSN: 0950-9232 , 1476-5594
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2008404-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 3831-3831
    Abstract: Despite advances in understanding of the biology of acute myeloid leukemia (AML), cure remains elusive for the majority of patients. ABT-199 (Venetoclax) is a small-molecule BH3 mimetic that selectively inhibits BCL-2 causing cell death. ABBV-744 is a highly selective inhibitor for the BDII of BET family proteins, exhibiting greater than 300-fold more potent binding affinity to the BDII bromodomain of BRD4 relative to BDI (Warren Kati AACR 2018; Xiaoyu Lin AACR 2018). In this study, we evaluated the anti-leukemia efficacy of the concomitant BCL-2 blockade by venetoclax and of BDII inhibition with ABBV-744 in primary AML samples. First, anti-leukemia activity of venetoclax and ABBV-744 was examined in 12 primary AML samples with diverse genomic alterations. The combination significantly enhanced cell death (61.4% ± 8.7%), as compared to the single agent treatment (51.4% ± 9.3% in venetoclax 10 nM group and 22.2% ± 3.4% in ABBV-744 50 nM group, p & lt;0.001). ABBV-744 inhibited cell proliferation in the majority of AML cases (31.7% ± 8.2 %), and the cell growth suppression was more profound in the combination group (82.9% ± 6.9%, p & lt;0.001). Most importantly, three of 12 patients were resistant to venetoclax, but two of these were sensitive to ABBV-744 or ABBV-744/venetoclax combination. We next performed the whole genome transcriptome analysis of pre-treatment AML cells by RNA-sequencing (RNA-seq). The samples which were sensitive to venetoclax and to the combination with ABBV-744 were characterized by high levels of BCL2 and mid-low level of MCL1 expression. In addition, low mRNA expression of AR, IL1R1 expression and high CCND1 expression correlated with response of primary AML cells to the combination of venetoclax and ABBV-744. To test the efficacy of this regimen in vivo, we established a patient-derived xenograft (PDX) from an AML patient in NSG mice. After 21 days of therapy, flow cytometry data demonstrated significantly reduced leukemia burden in venetoclax treated group (9.5% ± 1.7%) but not in ABBV-744 group (22.3% ± 5.8%) compared to controls (30.8% ± 3.9%), with lowest tumor burden in the combination group (5.0% ± 0.8%, p & lt;0.01). No significant impact on mice’ weight was noted, and no clinical signs of toxicity recorded over the course of therapy. The experiment is ongoing, and the survival analysis will be reported. Next, the anti-leukemia efficacy of ABBV-744 was tested in 7 additional AML PDX models. In all of the 7 models, Combination of ABBV-744 and venetoclax treatment delayed AML progression compared to untreated mice (survival days: 141 vs 105, 275 vs 153, 62 vs 46, 136 vs 119, 138 vs 77, 129 vs 116, 94 vs 86). In summary, combinatorial blockade of BDII bromodomain and of BCL-2 anti-apoptotic pathway facilitates apoptotic cell death and suppresses proliferation in the majority of primary AML cells and produces anti-AML activity in AML PDX models in vivo. Citation Format: Tianyu Cai, Vinitha Kuruvilla, Xiaoyu Lin, Tamar Uziel, Xin Lu, Lu Zhang, Qi Zhang, Lina Han, Antonio Cavazos, Yu Shen, Marina Konopleva. Selective targeting BET family BDII bromodomain with ABBV-744 and BCL-2 with venetoclax (ABT-199) is synergistic in primary acute myeloid leukemia models [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 3831.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Rockefeller University Press ; 2022
    In:  Journal of Experimental Medicine Vol. 219, No. 1 ( 2022-01-03)
    In: Journal of Experimental Medicine, Rockefeller University Press, Vol. 219, No. 1 ( 2022-01-03)
    Abstract: Targeted therapies represent attractive combination partners with immune checkpoint blockade (ICB) to increase the population of patients who benefit or to interdict the emergence of resistance. We demonstrate that targeting WEE1 up-regulates immune signaling through the double-stranded RNA (dsRNA) viral defense pathway with subsequent responsiveness to immune checkpoint blockade even in cGAS/STING-deficient tumors, which is a typical phenotype across multiple cancer types. WEE1 inhibition increases endogenous retroviral elements (ERVs) expression by relieving SETDB1/H3K9me3 repression through down-regulating FOXM1. ERVs trigger dsRNA stress and interferon response, increasing recruitment of anti-tumor T cells with concurrent PD-L1 elevation in multiple tumor models. Furthermore, combining WEE1 inhibition and PD-L1 blockade induced striking tumor regression in a CD8+ T cell–dependent manner. A WEE1 inhibition–induced viral defense signature provides a potentially informative biomarker for patient selection for combination therapy with WEE1 and ICB. WEE1 inhibition stimulates anti-tumor immunity and enhances sensitivity to ICB, providing a rationale for the combination of WEE1 inhibitors and ICB in clinical trials.
    Type of Medium: Online Resource
    ISSN: 0022-1007 , 1540-9538
    RVK:
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 2022
    detail.hit.zdb_id: 1477240-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Nature Genetics, Springer Science and Business Media LLC, Vol. 46, No. 8 ( 2014-8), p. 872-876
    Type of Medium: Online Resource
    ISSN: 1061-4036 , 1546-1718
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2014
    detail.hit.zdb_id: 1494946-5
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 1439-1439
    Abstract: The BET family proteins consist of BRD2, BRD3, BRD4 and BRDT, with each of these proteins containing two highly conserved bromodomains (BDI and BDII). First generation BET inhibitors, including ABBV-075, are pan-BET inhibitors that bind with nearly equimolar affinity to BDI and BDII. Pan-BET inhibitors generally block transcription and inhibit the proliferation of a large spectrum of tumor types, but exhibit a narrow therapeutic index. ABBV-744 is a highly selective inhibitor for the BDII of BET family proteins, exhibiting greater than 300-fold more potent binding affinity to the BDII bromodomain of BRD4 relative to BDI (Warren Kati AACR 2018; Xiaoyu Lin AACR 2018). In this study, we evaluated the anti-leukemia activities of ABBV-744 in acute myelogenous leukemia (AML) cell lines and primary samples. In AML cell lines, ABBV-744 induced G1 cell cycle arrest and apoptosis with caspase-3 activation and PAPR cleavage through regulation of the key proteins that are involved in cell cycle and apoptosis pathways (e.g. (BCL-2, BCL-XL, MCL-1, c-Myc). Mechanistically, ABBV-744 displaced BRD4 from the regulatory region of BCL2, RUNX1, BCL2L1 and IL8 genes by ChiP-Seq. MLL-rearranged cells were most sensitive to BDII inhibition, and ABBV-744 displaced both, BRD4 and MLL from the regulatory regions of BCL2 and c-Myc genes in MV4;11 (MLL-AF4) and Nomo-1 (MLL-AF9) cells. We examined anti-leukemia activity of ABBV-744 in 12 primary AML samples with diverse genetic alterations. ABBV-744 inhibited cell growth in 8/12 primary samples (20.2%-77.9%) and induced apoptosis (26.7 ± 9.6% in ABBV-744 group vs 14.1± 3.9% in DMSO group, p=0.007, Fig 1A). We next performed the whole genome transcriptome analysis of pre-treatment AML cells by RNA-sequencing (RNA-seq). The samples which were sensitive to ABBV-744 tend to have higher pro-apoptosis (TXNIP, DR5) and lower anti-apoptosis (BCL2, EXPO) than resistant samples. For efficacy assessment in vivo, we established a patient-derived xenograft (PDX) from an AML patient with FLT3-ITD, DNMT3A, IDH1 and NPM1 mutations in NSG mice. Upon engraftment, mice were randomized to receive vehicle or single agent ABBV-744 at a well-below MTD dose of 9.4 mg/kg for 21 days. The median survival time of mice treated with ABBV-744 (Median survival: 76 days) was significantly higher compared to untreated mice (Median survival: 67.5 days, p=0.007, Fig 1B). Next, the anti-leukemia efficacy of ABBV-744 was tested in 7 additional AML PDX models. NSG mice were injected with 7 AML PDX (one mouse per cohort design). After engraftment was confirmed by retro-orbital bleeding, mice were treated with vehicle or ABBV-744. Circulating tumor burden was measured by flow cytometry in peripheral blood samples from mice collected on indicated days of therapy. In five of the 7 models, ABBV-744 treatment delayed AML progression compared to untreated mice (survival days: 135 vs 105, 205 vs 153, 62 vs 46, 118 vs 77, 97 vs 86). No significant impact on mice' weight was noted (Fig 1C), and no clinical signs of toxicity recorded over the course of therapy. In summary, blockade of BET family bromodomain BDII promotes apoptotic cell death and suppresses proliferation in the majority of primary AML cells. Importantly, ABBV-744 therapy reduced AML tumor burden and extended survival in AML PDX models at a well-below MTD dose. Together, these results provide proof of concept that highly selective inhibitors of the second bromodomain of BET family may maintain robust anti-leukemia efficacy in AML while exhibiting improved tolerability relative to pan-BET inhibitors. Disclosures Uziel: AbbVie Inc.: Employment. Shen:AbbVie Inc: Employment. Konopleva:Stemline Therapeutics: Research Funding. Lin:AbbVie Inc: Employment. Lu:AbbVie Inc: Employment. Zhang:AbbVie Inc: Employment.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 1369-1369
    Abstract: Despite advances in understanding of the biology of acute myeloid leukemia (AML), cure remains elusive for the majority of patients. ABT-199 (Venetoclax) is a small-molecule BH3 mimetic that selectively inhibits BCL-2 causing cell death. First generation BET inhibitor ABBV-075 and Venetoclax were recently shown to be synergistic in AML cell lines (Bui MH,Cancer Res 2017). ABBV-744 is a highly selective inhibitor for the BDII of BET family proteins, exhibiting greater than 300-fold more potent binding affinity to the BDII bromodomain of BRD4 relative to BDI (Warren Kati AACR 2018; Xiaoyu Lin AACR 2018). In this study, we evaluated the anti-leukemia efficacy of the concomitant BCL-2 blockade by venetoclax and of BDII inhibition with ABBV-744 in primary AML samples. Anti-leukemia activity of venetoclax and ABBV-744 was examined in 21 primary AML samples with diverse genomic alterations. The combination significantly enhanced cell death (57.0 ± 6.3%) compared to the single agent treatment (43.9 ± 5.7% in ABT-199 10 nM group, p & lt;0.001 and 23.8 ± 2.9% in ABBV-744 20nM group, p & lt;0.001, Fig.1A). ABBV-744 reduced viable cell numbers in the majority of AML cases (31.7 ± 5.2%) and the cell growth suppression was more profound in the combination group (77.2 ± 6.3 %, p & lt;0.001, Fig.1B). In two AML primary samples tested, combination treatment of ABBV-744 and ABT-199 induced apoptosis with caspase-3 activation and PARP cleavage through regulation of the key proteins regulating survival and proliferation pathways (e.g. (BCL-2, BCL-XL, MCL-1, c-Myc)). To identify biomarkers of response to therapy, we performed the baseline transcriptome analysis of AML cells used for in vitro response assessment (n=25) by RNA-sequencing (RNA-seq), and correlated baseline gene expression levels with in vitro response to therapy. Based on response to venetoclax or combination, samples were divided into 3 groups: sensitive to venetoclax (n=10), samples with no response to single agent or combination ("low apoptosis", n=7) and samples resistant to venetoclax as a single agent but responsive to venetoclax/ ABBV-744 combination ("synergy", n=4). AML samples sensitive to venetoclax and venetoclax/ABBV-744 combination were characterized by high level of BCL2 and lower levels of MCL1 and BCL2L1 transcripts, consistent with known inability of venetoclax to inhibit MCL-1 and BCL2L1 (Fig.1C).The resistant samples additionally expressed higher levels of anti-apoptotic genes such as GADD45, BCL2L10, PMAIP1. AML cells that showed synergy between venetoclax/ABBV-744 expressed low levels of AR, IL1R1 genes and had high CCND1 expression. The gene expression analysis indicated that the genes differentially expressed in the synergy vs. low apoptosis samples overlap with the genes inhibited by dual BCL-2/BCL-XL inhibitor ABT-737. To test the efficacy of this regimen in vivo, we established a patient-derived xenograft (PDX) from an AML patient with FLT3-ITD, DNMT3A, EGFR, IDH1, NPM1, TET2 mutations in NSG mice. Upon engraftment, mice were randomized to receive vehicle; single agent venetoclax at 50 mg/kg; ABBV-744 at 9.4 mg/kg; or venetoclax plus ABBV-744 for 21 days. After 21 days of therapy, flow cytometry data demonstrated significantly reduced leukemia burden in venetoclax treated group (9.5% ± 1.7%) but not in ABBV-744 group (22.3% ± 5.8%) compared to controls (30.8% ± 3.9%), with lowest tumor burden in the combination group (5.0% ± 0.8%, p & lt;0.01) (Fig. 1E). Combination of ABBV-744 and venetoclax treatment delayed AML progression and extended the survival compared to the untreated mice (median survival, 193 days vs 99 days, p & lt;0.001) (Fig. 1D). No significant impact on mice' weight was noted, and no clinical signs of toxicity recorded over the course of therapy. In summary, combinatorial blockade of BDII bromodomain and of BCL-2 anti-apoptotic pathway facilitates apoptotic cell death, suppresses proliferation in the majority of primary AML cells and produces anti-AML activity in AML PDX models in vivo at tolerable doses of both agents. This combination is currently undergoing testing in a Phase I clinical trial in AML (NCT03360006). Disclosures Kuruvilla: The University of Texas M.D.Anderson Cancer Center: Employment. Lin:AbbVie: Employment. Uziel:AbbVie: Employment, Other: stock or other options. Lu:AbbVie: Employment. Zhang:AbbVie: Employment. Huang:AbbVie: Employment. Zhang:The University of Texas M.D.Anderson Cancer Center: Employment. Shen:AbbVie: Employment. Konopleva:Astra Zeneca: Research Funding; Ablynx: Research Funding; Eli Lilly: Research Funding; Kisoji: Consultancy, Honoraria; Ascentage: Research Funding; Agios: Research Funding; Reata Pharmaceuticals: Equity Ownership, Patents & Royalties; Amgen: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria, Research Funding; Cellectis: Research Funding; Genentech: Honoraria, Research Funding; Stemline Therapeutics: Consultancy, Honoraria, Research Funding; Calithera: Research Funding; F. Hoffman La-Roche: Consultancy, Honoraria, Research Funding; Forty-Seven: Consultancy, Honoraria.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Stroke, Ovid Technologies (Wolters Kluwer Health), Vol. 53, No. 5 ( 2022-05), p. 1580-1588
    Abstract: In patients undergoing mechanical thrombectomy (MT), adjunctive antithrombotic might improve angiographic reperfusion, reduce the risk of distal emboli and reocclusion but possibly expose patients to a higher intracranial hemorrhage risk. This study evaluated the safety and efficacy of combined MT plus eptifibatide for acute ischemic stroke. Methods: This was a propensity-matched analysis of data from 2 prospective trials in Chinese populations: the ANGEL-ACT trial (Endovascular Treatment Key Technique and Emergency Workflow Improvement of Acute Ischemic Stroke) in 111 hospitals between November 2017 and March 2019, and the EPOCH trial (Eptifibatide in Endovascular Treatment of Acute Ischemic Stroke) in 15 hospitals between April 2019 and March 2020. The primary efficacy outcome was good outcome (modified Rankin Scale score 0–2) at 3 months. Secondary efficacy outcomes included the distribution of 3-month modified Rankin Scale scores and poor outcome (modified Rankin Scale score 5–6) and successful recanalization. The safety outcomes included any intracranial hemorrhage, symptomatic intracranial hemorrhage, and 3-month mortality. Mixed-effects logistic regression models were used to account for within-hospital clustering in adjusted analyses. Results: Eighty-one combination arm EPOCH subjects were matched with 81 ANGEL-ACT noneptifibatide patients. Compared with the no eptifibatide group, the eptifibatide group had significantly higher rates of successful recanalization (91.3% versus 81.5%; P =0.043) and 3-month good outcomes (53.1% versus 33.3%; P =0.016). No significant difference was found in the remaining outcome measures between the 2 groups. All outcome measures of propensity score matching were consistent with mixed-effects logistic regression models in the total population. Conclusions: This matched-control study demonstrated that MT combined with eptifibatide did not raise major safety concerns and showed a trend of better efficacy outcomes compared with MT alone. Overall, eptifibatide shows potential as a periprocedural adjunctive antithrombotic therapy when combined with MT. Further randomized controlled trials of MT plus eptifibatide should be prioritized. Registration: URL: https://www.clinicaltrials.gov ; Unique identifier: NCT03844594 (EPOCH), NCT03370939 (ANGEL-ACT).
    Type of Medium: Online Resource
    ISSN: 0039-2499 , 1524-4628
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2022
    detail.hit.zdb_id: 1467823-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Gastroenterology, Elsevier BV, ( 2024-4)
    Type of Medium: Online Resource
    ISSN: 0016-5085
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2024
    detail.hit.zdb_id: 1478699-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  Journal of Cancer Research and Clinical Oncology
    In: Journal of Cancer Research and Clinical Oncology, Springer Science and Business Media LLC
    Type of Medium: Online Resource
    ISSN: 0171-5216 , 1432-1335
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 1459285-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages