Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: IEEE Electron Device Letters, Institute of Electrical and Electronics Engineers (IEEE), Vol. 31, No. 3 ( 2010-03), p. 231-233
    Type of Medium: Online Resource
    ISSN: 0741-3106 , 1558-0563
    RVK:
    Language: Unknown
    Publisher: Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2010
    detail.hit.zdb_id: 245158-X
    detail.hit.zdb_id: 2034325-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    SAGE Publications ; 2020
    In:  Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering Vol. 234, No. 5 ( 2020-04), p. 1279-1293
    In: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, SAGE Publications, Vol. 234, No. 5 ( 2020-04), p. 1279-1293
    Abstract: Nozzle hydraulic flow rate is a critical parameter that affects the combustion process and plays a vital role in the production of emissions from a diesel engine. In this study, injection characteristics, such as normalized injection rate and spray tip penetration, were analyzed for different hydraulic flow rate injectors with the help of spray experiments. To further investigate the effects of hydraulic flow rate on engine-out particulate and gaseous emissions, engine experiments were performed for different values of hydraulic flow rate in multiple injectors. Various operating conditions and loading configurations were examined, and the effects of varying start of injection and exhaust gas recirculation rates for different hydraulic flow rates were analyzed. A separate Pegasor Particle Sensor (PPS-M) sensor was used to measure and collect data on the particle number, and an analysis was conducted to investigate the relation of particle number with hydraulic flow rate, injection timing, and exhaust gas recirculation rate. Results of the spray experiment exhibited a decreasing injection duration and increasing spray tip penetration with increasing hydraulic flow rate. Effect of hydraulic flow rate on combustion and emission characteristics were analyzed from engine experiment results. Least ignition delay was achieved using a smaller hole diameter, retarded injection timing, and lowest EGR%. Higher hydraulic flow rate with retarded injection timing and higher EGR% helped in reduction of NOx emissions and brake-specific fuel consumption, but particulate emissions were increased. Best particulate matter–NOx trade-off was achieved with lowest hydraulic flow rate.
    Type of Medium: Online Resource
    ISSN: 0954-4070 , 2041-2991
    RVK:
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2020
    detail.hit.zdb_id: 2032754-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    SAGE Publications ; 2012
    In:  Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering Vol. 226, No. 8 ( 2012-08), p. 1130-1142
    In: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, SAGE Publications, Vol. 226, No. 8 ( 2012-08), p. 1130-1142
    Abstract: The purpose of this study was to investigate the effect of the exhaust gas recirculation rate on the combustion and exhaust emission reduction characteristics of dimethyl ether fuel in a single-cylinder diesel engine. To investigate the effects on emission reduction, the test set-up was composed of a dimethyl ether supply system, a spray visualization system, an engine combustion system and an emissions analysis system. In this work, the spray visualization and exhaust emissions were measured using a high-speed camera with a metal halide lamp, a smoke meter and an emission gas analyser. The spray tip penetration and tip velocity of dimethyl ether fuel were lower than those of conventional diesel fuel. The reduction slope of the spray cone angle for dimethyl ether was less than that for diesel fuel owing to its low density and superior evaporation characteristics. The increase in the exhaust gas recirculation rate caused an extension of the ignition delay for dimethyl ether. During the extended ignition delay, the improved mixing characteristics influenced the slight decrease in the combustion period. An increase in the exhaust gas recirculation rate caused a significant reduction in the emission of nitrogen oxides. In addition, the soot emission was very low owing to the intrinsic characteristics of dimethyl ether (no direct carbon–carbon bonds). At the given equivalence ratio condition, the indicated specific hydrocarbon and indicated specific carbon monoxide emissions for dimethyl ether were extremely low when dimethyl ether spray was injected into the piston bowl (from 25° before top dead centre to top dead centre). Also, in this case, a change in the exhaust gas recirculation rate for dimethyl ether combustion had minimal effects on the indicated specific hydrocarbon and indicated specific carbon monoxide emissions. These results suggest that the use of high exhaust gas recirculation with dimethyl ether fuel can achieve near-zero exhaust emissions (nitrogen oxides, soot, hydrocarbons and carbon monoxide).
    Type of Medium: Online Resource
    ISSN: 0954-4070 , 2041-2991
    RVK:
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2012
    detail.hit.zdb_id: 2032754-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: International Journal of Engine Research, SAGE Publications, Vol. 17, No. 10 ( 2016-12), p. 1092-1107
    Abstract: Internal combustion engine research on alternative fuels has gained momentum because of growing awareness about energy security and environmental issues worldwide. Biodiesel offers an ideal solution to these problems and is an excellent partial replacement to mineral diesel. In this study, Karanja biodiesel blended with mineral diesel has been investigated for macroscopic spray characterization vis-à-vis baseline mineral diesel by varying fuel injection pressures (50, 100 and 150 MPa). Spray developed with relatively narrower spray angle for KB20. Injector needle movement for energizing and real injection durations were also compared for diesel and KB20 at fuel injection pressures of 50, 100 and 150 MPa. Needle movement was slightly higher for KB20 because of its relatively higher viscosity. However, with increasing fuel injection pressure, the difference reduced and showed quite similar results. A 2.2 L common rail direct injection sport utility vehicle EURO-IV diesel engine was used for the experiments. Engine performance, emissions and combustion characteristics of KB20 were compared with baseline mineral diesel at (1) the rated engine speed (2500 r/min) with varying engine loads as well as (2) at the rated load at varying engine speeds (1500–3500 r/min). Brake thermal efficiency of KB20 was lower than mineral diesel. Brake-specific carbon monoxide and carbon dioxide emissions decreased with increasing brake mean effective pressure and showed increasing trend with increasing engine speeds. KB20 showed emission of higher number of particles compared to mineral diesel at all engine operating conditions. Higher oxygen content of biodiesel resulted in shorter ignition delay and slightly higher peak cylinder pressure. KB20 showed relatively longer combustion duration compared to mineral diesel at 2500 r/min engine speed.
    Type of Medium: Online Resource
    ISSN: 1468-0874 , 2041-3149
    RVK:
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2016
    detail.hit.zdb_id: 2030603-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    SAGE Publications ; 2013
    In:  Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering Vol. 227, No. 4 ( 2013-04), p. 459-471
    In: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, SAGE Publications, Vol. 227, No. 4 ( 2013-04), p. 459-471
    Abstract: This paper presents a numerical and experimental study of the combustion and emission characteristics of a gasoline direct-injection compression ignition engine using intake preheating. The gasoline direct-injection compression ignition engine was predicted to reduce emissions compared with the emissions from a conventional diesel engine. To compare the combustion and emission characteristics of the gasoline direct-injection compression ignition and diesel engines, numerical modelling was conducted using the KIVA-3V release 2 code, which is integrated with the Chemkin chemistry solver II. Numerical simulations were performed under a variety of conditions to determine the optimal conditions for gasoline direct-injection compression ignition engine operation. In order to achieve the gas pressure in the cylinder and the emission characteristics, experiments were performed using a single-cylinder engine. The simulation results agreed well with the experimental data. The gasoline autoignition was in the parcels with a lower equivalence ratio of 0.6–0.8 as opposed to the diesel autoignition parcels with a high equivalence ratio of greater than 1. The ignition delay of gasoline was longer than that of diesel; therefore, the gasoline direct-injection compression ignition engine could reduce the soot emissions. The nitrogen oxide emission levels for gasoline direct-injection compression ignition were increased because of the intake preheating.
    Type of Medium: Online Resource
    ISSN: 0954-4070 , 2041-2991
    RVK:
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2013
    detail.hit.zdb_id: 2032754-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    SAGE Publications ; 2012
    In:  Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering Vol. 226, No. 12 ( 2012-12), p. 1667-1677
    In: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, SAGE Publications, Vol. 226, No. 12 ( 2012-12), p. 1667-1677
    Abstract: An experimental investigation was performed to investigate the effect of a split-injection strategy on the combustion and exhaust emission characteristics as well as on the particle number distribution for a single-cylinder compression ignition engine with gasoline–dimethyl ether dual fuelling. The gasoline–dimethyl ether dual-fuel injection system utilized port injection for gasoline and direct injection for dimethyl ether. In the present system, premixed fuel (i.e. gasoline) was injected into the premixing chamber at an injection pressure of 3 MPa using gasoline direct injection to mix the air–gasoline mixture sufficiently. However, dimethyl ether fuel was injected at an injection pressure of 50 MPa directly into a combustion chamber in order to control the combustion phase, resulting in a change in the direct-injection timing from −20° to +2° crank angle. The experimental results show that the gasoline–dimethyl ether dual-fuel engine exhibited benefits in the indicated mean effective pressure for early-injection cases (i.e. near −10° crank angle after top dead centre). However, the indicated mean effective pressure of the gasoline–dimethyl ether dual-fuel engine deteriorated for delayed-injection cases owing to incomplete combustion. In addition, a significant reduction in the nitrogen oxide emissions was observed using gasoline–dimethyl ether dual fuel compared with those obtained using conventional dimethyl ether combustion. In particular, soot emissions are almost at zero level for all the cases. On the other hand, hydrocarbon and carbon dioxide emissions increase with an increasing portion of premixed injection fuel (i.e. gasoline) in conventional injection timing, which is near top dead centre.
    Type of Medium: Online Resource
    ISSN: 0954-4070 , 2041-2991
    RVK:
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2012
    detail.hit.zdb_id: 2032754-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    SAGE Publications ; 2023
    In:  International Journal of Engine Research Vol. 24, No. 8 ( 2023-08), p. 3655-3673
    In: International Journal of Engine Research, SAGE Publications, Vol. 24, No. 8 ( 2023-08), p. 3655-3673
    Abstract: In this study, the effects of piston shapes on in-cylinder flow characteristics and mixture formation in the lean condition was analyzed using the PIV method and CFD (CONVERGE v2.4). The four-piston geometries were concave, flat, convex, and base pistons, and the pistons were mounted on a GDI engine with transparent quartz. To quantify in-cylinder flow characteristics, the mean velocity, tumble ratio, turbulent kinetic energy, and tumble center were calculated. In addition, to analyze the effects of the difference in piston shapes in detail, the velocity fraction was calculated by dividing the cylinder area into three. In-cylinder flow was compared for the case without injection and the case with injection. There were four timed injections at C.A. 420°, 480°, 540°, and 600°, and the mixture characteristics were investigated in the cases of 480° and 600° injection. In the intake process and early compression process, there was no significant difference in the quantitative values for the shape of the piston regardless of the presence or absence of injection. However, the effects of the piston crown designs increased in the later compression process. As a result, the highest turbulent kinetic energy was found using a flat piston with a relatively high tumble ratio and swirl ratio in the absence of injection. The mixture formation was similar for all piston crown designs when injected at the crank angle of 480°. However, when the crank angle of 600° was injected, a stagnant fuel area was formed using the base-type piston, so it was difficult to secure sufficient fuel near the center of the cylinder.
    Type of Medium: Online Resource
    ISSN: 1468-0874 , 2041-3149
    RVK:
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2023
    detail.hit.zdb_id: 2030603-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    SAGE Publications ; 2021
    In:  International Journal of Engine Research Vol. 22, No. 8 ( 2021-08), p. 2689-2708
    In: International Journal of Engine Research, SAGE Publications, Vol. 22, No. 8 ( 2021-08), p. 2689-2708
    Abstract: Particle number emissions need to be monitored and controlled in order to comply with the latest emission legislations for gasoline and diesel engines. This research focuses on performance and emission analysis of a light-duty diesel engine with various injector hole numbers. A 500cc single-cylinder diesel engine was used for this purpose, and injectors with hole numbers varying from 7 to 10 were analyzed. Different operating conditions were selected to test the engine at all types of loading conditions. Start of injection and exhaust gas recirculation swings were carried out at all the test cases to see the variation of particle number and other emissions. Increasing injector hole number from 7 to 9, in-cylinder pressure heat release rate and combustion duration increased while ignition delay was shortened. Soot-NOx and ISFC-NOx trade-offs also improved with decreasing hole diameter for these hole numbers. Particle number emissions reduced significantly with increasing hole number. However, the 10-hole injector exhibited a different behavior than the other injectors. For low loading case, cylinder pressure and heat release rate were higher than those of the 9-hole injector but for medium and high loading cases, in-cylinder pressure, heat release rate, and combustion duration of the 10-hole injector were found to be lesser than the 9-hole injector. For medium and high loading cases, particle number emissions from the 10-hole nozzle also increased as compared to the 9-hole injector. Optical engine investigation revealed a higher flame-flame interference in case of the 10-hole injector which resulted in degraded combustion performance and higher particle number emissions.
    Type of Medium: Online Resource
    ISSN: 1468-0874 , 2041-3149
    RVK:
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2021
    detail.hit.zdb_id: 2030603-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    SAGE Publications ; 2021
    In:  International Journal of Engine Research Vol. 22, No. 9 ( 2021-09), p. 2997-3012
    In: International Journal of Engine Research, SAGE Publications, Vol. 22, No. 9 ( 2021-09), p. 2997-3012
    Abstract: The flash boiling phenomenon is critically affected by not only injection conditions such as fuel temperature, ambient pressure and physical properties of fuel but also the nozzle hole configurations of the injector. In this research, two kinds of injectors, having different nozzle hole configurations (a closed type and a opened type) were used to analyze the influence of flash boiling. Near-field and far-field spray visualization was performed using a high-speed camera based on the Mie-scattering imaging technique. Test parameters were injection pressure, ambient pressure, and fuel temperature. The spray length, spray width, length-to-width ratio, and axial velocity of spray development depending on time were measured using the MATLAB program for quantitative and objective analysis. Finally, the prediction equation for the spray length was derived using the least-squares method based on the experimental results. In the case of the closed type injector, the spray center contained a wide overlapped region because of the strong links between plumes. On the other hand, with the opened type injector, there was a relatively narrow overlapped region between plumes due to weak interaction between plumes. As a result, the closed type injector had a narrow and long spray structure and the opened type injector had a partially long and wide spray structure. According to the prediction equation, the spray develops depending on time more linearly under flash boiling conditions than under non-flash boiling conditions. The influence of flash boiling was smaller in the closed type injector because the closed type injector has less variation of the spray structure with varying injection conditions, ranging from non-flash boiling conditions to non-flash boiling conditions.
    Type of Medium: Online Resource
    ISSN: 1468-0874 , 2041-3149
    RVK:
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2021
    detail.hit.zdb_id: 2030603-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    SAGE Publications ; 2013
    In:  Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering Vol. 227, No. 7 ( 2013-07), p. 951-965
    In: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, SAGE Publications, Vol. 227, No. 7 ( 2013-07), p. 951-965
    Abstract: The main objective of this experimental study was to investigate the spray atomization process of a multi-hole gasoline direct injector by characterizing the basic process of single-jet atomization as well as complex phenomena such as air entrainment and jet interactions. We measured the droplet size and velocity using a phase Doppler particle analysis system at different measurement distances and different injection pressures in both the parallel direction and the orthogonal direction with respect to spray propagation. In addition, we calculated the Weber numbers to characterize further the spray atomization process. Our experimental results showed that the droplet velocities followed similar trends for different measurement distances but that the peak value decreased as the distance increased. Furthermore, a leading edge of the spray was observed at the initial stage of injection but disappeared as the measurement distance increased. Based on the droplet diameter distribution, we confirmed that increasing the distance and air entrainment had effects on the jet atomization process. Air entrainment was seen at the edges of both sides of the jet when the droplet diameter was less than 23 µm and the droplet was travelling at a low velocity, and the spray atomization process was more activated under air entrainment conditions. A comparison of different injection pressures confirmed that the injection pressure plays an important role in droplet break-up.
    Type of Medium: Online Resource
    ISSN: 0954-4070 , 2041-2991
    RVK:
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2013
    detail.hit.zdb_id: 2032754-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages