Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Veterinary and Comparative Oncology, Wiley, Vol. 16, No. 1 ( 2018-03), p. 55-68
    Abstract: Mastocytoma are frequently diagnosed cutaneous neoplasms in dogs. In non‐resectable mastocytoma patients, novel targeted drugs are often applied. The transcription factor STAT5 has been implicated in the survival of human neoplastic mast cells (MC). Our study evaluated the JAK2/STAT5 pathway as a novel target in canine mastocytoma. Materials and Methods We employed inhibitors of JAK2 (R763, TG101348, AZD1480, ruxolitinib) and STAT5 (pimozide, piceatannol) and evaluated their effects on 2 mastocytoma cell lines, C2 and NI‐1. Results Activated JAK2 and STAT5 were detected in both cell lines. The drugs applied were found to inhibit proliferation and survival in these cells with the following rank‐order of potency: R763 〉 TG101348 〉 AZD1480 〉 pimozide 〉 ruxolitinib 〉 piceatannol. Moreover, synergistic anti‐neoplastic effects were obtained by combining pimozide with KIT‐targeting drugs (toceranib, masitinib, nilotinib, midostaurin) in NI‐1 cells. Conclusion The JAK2/STAT5 pathway is a novel potential target of therapy in canine mastocytoma.
    Type of Medium: Online Resource
    ISSN: 1476-5810 , 1476-5829
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2129634-0
    SSG: 22
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: memo - Magazine of European Medical Oncology, Springer Science and Business Media LLC, Vol. 6, No. 2 ( 2013-6), p. 114-118
    Type of Medium: Online Resource
    ISSN: 1865-5041 , 1865-5076
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2013
    detail.hit.zdb_id: 2428960-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: The Lancet Haematology, Elsevier BV, Vol. 6, No. 12 ( 2019-12), p. e638-e649
    Type of Medium: Online Resource
    ISSN: 2352-3026
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2019
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Leukemia, Springer Science and Business Media LLC, Vol. 36, No. 2 ( 2022-02), p. 516-524
    Type of Medium: Online Resource
    ISSN: 0887-6924 , 1476-5551
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2008023-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 137, No. 2 ( 2021-01-14), p. 238-247
    Abstract: Mastocytosis is a hematopoietic neoplasm characterized by expansion of KIT D816V-mutated clonal mast cells in various organs and severe or even life-threatening anaphylactic reactions. Recently, hereditary α-tryptasemia (HαT) has been described as a common genetic trait with increased copy numbers of the α-tryptase encoding gene, TPSAB1, and associated with an increased basal serum tryptase level and a risk of mast cell activation. The purpose of our study was to elucidate the clinical relevance of HαT in patients with mastocytosis. TPSAB1 germline copy number variants were assessed by digital polymerase chain reaction in 180 mastocytosis patients, 180 sex-matched control subjects, 720 patients with other myeloid neoplasms, and 61 additional mastocytosis patients of an independent validation cohort. α-Tryptase encoding TPSAB1 copy number gains, compatible with HαT, were identified in 17.2% of mastocytosis patients and 4.4% of the control population (P & lt; .001). Patients with HαT exhibited higher tryptase levels than patients without HαT (median tryptase in HαT+ cases: 49.6 ng/mL vs HαT− cases: 34.5 ng/mL, P = .004) independent of the mast cell burden. Hymenoptera venom hypersensitivity reactions and severe cardiovascular mediator-related symptoms/anaphylaxis were by far more frequently observed in mastocytosis patients with HαT than in those without HαT. Results were confirmed in an independent validation cohort. The high prevalence of HαT in mastocytosis hints at a potential pathogenic role of germline α-tryptase encoding TPSAB1 copy number gains in disease evolution. Together, our data suggest that HαT is a novel emerging robust biomarker in mastocytosis that is useful for determining the individual patient´s risk of developing severe anaphylaxis.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2021
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 3773-3773
    Abstract: Systemic mastocytosis (SM) is a hematologic neoplasm characterized by abnormal expansion and accumulation of neoplastic mast cells (MC) in various organs, including the bone marrow, skin, liver, spleen and gastrointestinal tract. In a majority of all patients, the transforming KIT mutation D816V is detectable. The clinical picture and prognosis in SM vary, depending on the variant of SM and the presence of an associated hematologic non-MC-lineage disease (AHNMD). The WHO classification discriminates between indolent SM (ISM), SM-AHNMD, aggressive SM (ASM) and MC leukemia (MCL). Recent data suggest that neoplastic MC in ASM and MCL express substantial amounts of cytoplasmic Ki-1 (CD30), a lymphoid antigen otherwise expressed in neoplastic cells in anaplastic large cell lymphoma and Hodgkin lymphoma, where CD30 serves as a therapy target. In the present study, we examined the expression of CD30 in various human MC-lines (HMC-1, MCPV) and primary neoplastic MC in patients with ISM (n=20) and advanced SM (ASM/MCL; n=10) and asked whether CD30 may serve as potential therapeutic target in SM. We found that CD30 is expressed abundantly in the cytoplasm of neoplastic MC in ASM and MCL in almost all patients, whereas in a majority of patients with ISM, MC expressed only low amounts or did not express cytoplasmic CD30. As assessed by flow cytometry, neoplastic MC in SM were also found to express cell surface CD30. In contrast to cytoplasmic expression, no clear correlation was found between the type of SM and CD30 surface expression on MC. Notably, MC expressed surface CD30 in 8/9 ISM patients and in 2/6 ASM/MCL patients. The immature human RAS-transformed MCL line MCPV (KIT D816V negative) also expressed cell surface CD30, whereas the MCL line HMC-1.1 (lacking KIT D816V) expressed only low levels, and the HMC-1.2 subclone (KIT D816V+) was found to stain CD30 negative. To examine whether CD30 may serve as a therapy target in SM, we applied brentuximab vedotin (provided by Millennium: The Takeda Oncology Company, Cambridge, MA, USA), which is an antibody-drug conjugate consisting of a chimeric anti-CD30 antibody and the microtuble inhibitor monomethyl auristatin E (MMAE). Brentuximab vedotin has recently been described to induce dose-dependent growth arrest in human CD30+ lymphoblastic cell lines. In the present study, brentuximab vedotin was found to inhibit the proliferation of MCPV and HMC-1 cells in a dose-dependent manner, with lower IC50 values found in CD30+ MCPV and HMC-1.1 cells (5 µg/ml) than in CD30− HMC-1.2 cells (10 µg/ml). As assessed by AnnexinV/PI staining and staining for active-caspase-3, brentuximab vedotin also induced dose-dependent apoptosis in CD30+ MCPV and HMC-1.1 cells, but did not induce substantial apoptosis in CD30− HMC-1.2 cells. Brentuximab vedotin was also found to induce growth inhibition and apoptosis in the CD30+ canine-mastocytoma cell line C2. We next examined the effects of brentuximab vedotin on in vitro survival (apoptosis) of primary neoplastic MC in patients with CD30− SM (n=3) and in patients with CD30+ SM (n=3). In these experiments, brentuximab vedotin was found to induce dose-dependent apoptosis at pharmacologically relevant concentrations in neoplastic MC in patients with CD30+ SM, whereas no effects were seen in patients with CD30− SM (Figure). Finally, we examined the effects of a drug combination consisting of brentuximab vedotin and the KIT D816V targeting drug PKC412 (midostaurin). We found that both drugs synergize with each other in inhibiting the in vitro proliferation of CD30+ MCPV cells. In conclusion, our data provide evidence that the target-antigen CD30 is expressed on the surface of neoplastic MC in patients with indolent and advanced SM. In addition, our data show that the CD30-targeting antibody brentuximab vedotin induces growth arrest and apoptosis in neoplastic MC and synergizes with midostaurin in inhibiting the growth of CD30+ neoplastic MC. Whether these effects also occur in vivo in patients with advanced mastocytosis remains to be determined in clinical trials. Neoplastic MC from patients with CD30− SM (n=3, grey bars) and CD30+ SM (n=3, black bars) were incubated in control medium (Co) or in various concentrations of brentuximab vedotin (37°C). After 96 hours, the percentage of AnnexinV+ viable DAPI-negative MC was determined by flow cytometry. Results represent the mean±S.D. of 3 independent experiments. Asterisk: p 〈 0.05 compared to control. Disclosures: Sotlar: Nanostring: Honoraria; Novartis: Consultancy. Reiter:Novartis: Consultancy, Honoraria. Horny:Novartis: Consultancy, Honoraria. Valent:Novartis: Consultancy, Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 1883-1883
    Abstract: The potent BCR-ABL1-targeting tyrosine kinase inhibitor (TKI) ponatinib is used for the treatment of patients with drug-resistant chronic myeloid leukemia (CML). However, an increased risk of development of cardiovascular events has been described in CML patients treated with ponatinib. The etiology of these adverse events is currently unknown. In an attempt to discover mechanisms underlying ponatinib-induced adverse vascular events, we have evaluated the effects of ponatinib in vitro on human vascular endothelial cells and on contraction of explanted mice aortic rings. In addition, we examined the effects of ponatinib on angiogenesis in vivo in a mouse model of hind limb ischemia. Ponatinib dose-dependently induced apoptosis in human coronary artery endothelial cells (HCAEC) in a caspase assay (relative apoptosis vs. 1% DMSO: ponatinib 50 nM: 1.79±0.38, p 〈 0.001; ponatinib 100 nM: 2.13±0.42, p 〈 0.001) and this drug effect could partially be blocked by addition of insulin (ponatinib 100 nM + insulin 5 µg/ml: 1.70±0.18, p 〈 0.05). In addition, ponatinib was found to inhibit the proliferation of human umbilical vein endothelial cells (HUVEC) and the human microvascular endothelial cell line HMEC-1, with IC50 values ranging between 100 and 250 nM (p 〈 0.05) as determined by thymidine-incorporation assay. Using a phospho-receptor tyrosine kinase assay in HCAEC, we found that ponatinib also inhibits fetal bovine serum-induced phosphorylation of the VEGF receptor KDR as well as phosphorylation of MER and insulin receptors, which play a role in angiogenesis, vascular homeostasis, and vessel protection. We also found that ponatinib (1 µM, 4 hours) increases adhesion of HUVEC to a plastic-surface compared to DMSO control (Figure). Based on clinical observations of vasoconstriction in ponatinib-treated patients, we also applied ponatinib on aortic rings harvested from C57BL/6 mice. Ponatinib (100 nM, overnight) enhanced norepinephrine-induced vasoconstriction (log EC50: control -7.76±0.06 vs. ponatinib -7.96±0.05, p 〈 0.05, n=6) and inhibited acetylcholine-mediated vasodilatation (log IC50: control -7.45±0.05 vs. ponatinib -7.06±0.1, p 〈 0.001) as shown by myography. These drug effects were blocked by inhibition of nitric oxide (using nitric oxide synthase inhibitor L-NNA, 100 µM) or COX (by applying diclofenac, 3 mg/l), suggesting that ponatinib promotes the generation of vasoconstricting prostanoids. Ponatinib effects were also blocked by the calcium channel blocker nifedipine (1 µM). In C57BL/6 mice, ponatinib (5 mg/kg/day for 35 days) was found to inhibit blood flow recovery in a hind limb ischemia model as shown by Laser-Doppler perfusion imaging after femoral artery ligation. The blood perfusion ratios of the ischemic limb vs. non-ischemic limb at week 5 were: control group: 0.67±0.07 vs. ponatinib: 0.56±0.1; p 〈 0.05). Ponatinib-treated mice also developed toe and foot necrosis more frequently than control mice (necrosis score: control: 0.3 vs. ponatinib: 1.3). In summary, ponatinib affects endothelial cell growth and vasomotor function in-vitro as well as blood flow recovery in a mouse model. These findings might help explain the occurrence of vascular events in CML patients treated with ponatinib and may lead to development of therapeutic strategies for prevention and treatment of ponatinib-induced adverse events. Figure Figure. Disclosures Kirchmair: Ariad: Research Funding. Valent:Ariad: Honoraria, Research Funding; Amgen: Honoraria; Deciphera Pharmaceuticals: Research Funding; Novartis: Honoraria, Research Funding; Celgene: Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 119, No. 18 ( 2012-05-03), p. 4242-4252
    Abstract: Aggressive systemic mastocytosis (ASM) and mast cell leukemia (MCL) are advanced hematopoietic neoplasms with poor prognosis. In these patients, neoplastic mast cells (MCs) are resistant against various drugs. We examined the effects of 2 demethylating agents, 5-azacytidine and decitabine on growth and survival of neoplastic MCs and the MC line HMC-1. Two HMC-1 subclones were used, HMC-1.1 lacking KIT D816V and HMC-1.2 exhibiting KIT D816V. Both agents induced apoptosis in HMC-1.1 and HMC-1.2 cells. Decitabine, but not 5-azacytidine, also produced a G2/M cell-cycle arrest in HMC-1 cells. Drug-induced apoptosis was accompanied by cleavage of caspase-8 and caspase-3 as well as FAS-demethylation and FAS–re-expression in neoplastic MCs. Furthermore, both demethylating agents were found to synergize with the FAS-ligand in inducing apoptosis in neoplastic MCs. Correspondingly, siRNA against FAS was found to block drug-induced expression of FAS and drug-induced apoptosis in HMC-1 cells. Neither 5-azacytidine nor decitabine induced substantial apoptosis or growth arrest in normal MCs or normal bone marrow cells. Together, 5-azacytidine and decitabine exert growth-inhibitory and proapoptotic effects in neoplastic MCs. These effects are mediated through “FAS–re-expression” and are augmented by the FAS-ligand. Whether epigenetic drugs produce antineoplastic effects in vivo in patients with ASM and MCL remains to be determined.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 2829-2829
    Abstract: Myeloproliferative neoplasms (MPN) are characterized by clonal expansion and accumulation of erythrocytes, platelets, and myeloid cells in the bone marrow (BM) and other organs. Classical MPN are polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). The JAK2 V617F mutation is frequently detected in neoplastic cells in patients with MPN. Although MPN are chronic and indolent diseases in most patients, fatal progression may occur. So far, the only curative approach for these patients is hematopoietic stem cell transplantation. Therefore, current research is evaluating new therapeutic targets and the effects of various targeted drugs. The epigenetic reader bromodomain-containing protein 4 (BRD4) has recently been identified as a promising target in acute myeloid leukemia. In the present study, we investigated the potential value of BRD4 as a molecular target in MPN. We employed two JAK2 V617F+ cell lines, SET-2 and HEL, as well as BM samples obtained from 18 MPN patients (ET: n=7; PV: n=7; PMF: n=4). Three BRD4 inhibitors were applied: JQ1, BI2536, and BI6727. As assessed by qPCR, primary MPN cells as well as SET-2 cells and HEL cells were found to express BRD4 mRNA. In 3 H-thymidine uptake experiments, all three BRD4 blockers were found to suppress the proliferation of the two MPN cell lines and of primary MPN cells in 8/8 patients tested. The effects of these drugs were dose-dependent, with the following IC50 values obtained in SET-2 cells: JQ1, 50-100 nM; BI2536, 20-40 nM; BI6727, 50-75 nM; and in HEL cells: JQ1, 100-500 nM; BI2536, 20-40 nM; BI6727, 30-50 nM. In primary MPN cells, all three agents tested produced IC50 values between 500 and 1000 nM. In normal BM cells, JQ1 did not produce a reasonable IC50 value ( 〉 5000 nM). In one patient sample (PMF), we analyzed the effect of JQ1 on the percentage of putative (neoplastic) stem cells (CD34+/CD38-). In this experiment, exposure to JQ1 was followed by a decrease in the percentage of CD34+/CD38- cells compared to control medium (control: 0.16% vs JQ1: 0.045%). To confirm the role of BRD4 as a potential target in MPN cells, we performed target-knockdown experiments in SET-2 cells and HEL cells using two different BRD4 shRNAs (#602 and #1817) and a random shRNA as control. In these experiments, the shRNA-induced knockdown of BRD4 was found to block proliferation in SET2 cells and HEL cells when compared to untransfected cells or random shRNA-transduced cells. In a next step, we examined the mechanism of drug-induced growth inhibition. In cell cycle experiments, BI2536 and BI6727 were found to induce a G2/M phase arrest in both cell lines. By contrast, JQ1 induced a G1 arrest in HEL cells, but did not show a significant effect on cell cycle progression in SET-2 cells. We also asked whether BRD4 inhibition is associated with induction of apoptosis in MPN cells. All three BRD4 blockers induced apoptosis in SET-2 cells and HEL cells at relatively high concentrations after 48 hours, with ED50 values of 〉 5 µM for JQ1 and 0.5-5.0 µM for BI2536 and BI6727. Finally, we asked whether exposure to BRD4 inhibitors is associated with modulation of BRD4 mRNA or MYC mRNA expression. As assessed by qPCR, JQ1, BI2536, and BI6727 were found to downregulate BRD4 mRNA levels as well as MYC mRNA levels in SET-2 cells and HEL cells. In conclusion, our data show that BRD4 is expressed in JAK2 V617F+ MPN cells and that BRD4 inhibition is associated with decreased proliferation and survival of neoplastic cells. The clinical value of BRD4 as a novel target in MPN cells remains to be determined. Disclosures Zuber: Mirimus Inc.: Consultancy, Other: Stock holder; Boehringer Ingelheim: Research Funding. Staber:Genactis: Research Funding; Morphosys: Consultancy, Honoraria; Roche: Consultancy, Honoraria; Takeda-Millenium: Research Funding; Janssen: Consultancy, Honoraria; Gilead: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; Karyopharm: Consultancy, Honoraria. Valent:Pfizer: Honoraria; Bristol-Myers Squibb: Honoraria; Celgene: Honoraria; Ariad: Honoraria, Research Funding; Novartis: Consultancy, Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 3457-3457
    Abstract: Abstract 3457 Aggressive systemic mastocytosis (ASM) and mast cell leukemia (MCL) are advanced myeloid neoplasms with a poor prognosis. In these patients, neoplastic mast cells (MC) are resistant against most conventional drugs. Demethylating agents reportedly exert beneficial effects in several advanced myelogenous neoplasms, including myelodysplastic syndromes. We examined the effects of two demethylating agents, 5-Azacytidine and 5-Aza-2`Deoxycytidine (Decitabine) on growth and survival (apoptosis) of neoplastic MC and the human MC line HMC-1. Two HMC-1 subclones were used, HMC-1.1 lacking KIT D816V and HMC-1.2 exhibiting KIT D816V. Both demethylating agents were found to induce apoptosis and growth inhibition in HMC-1.1 cells and HMC-1.2 cells in a dose-dependent manner (IC50: 5-Azacytidine: 5–10 μM, Decitabine: 1–5 μM). Interestingly, only Decitabine but not 5-Azacytidine induced a major G2/M cell cycle arrest in HMC-1 cells. Drug-induced apoptosis in HMC-1 cells was accompanied by cleavage and activation of Caspase-8 and Caspase-3 as well as an increased expression of proapoptotic FAS/CD95, whereas no major effects on expression of other surface antigens were seen. We also found that both demethylating agents synergize with the FAS-ligand in inducing apoptosis in neoplastic MC. Methylation-specific PCR and bisulfite genomic sequencing revealed that the FAS-promoter is hypermethylated in HMC-1 cells. In addition, qPCR demonstrated that exposure to 5-Azacytidine or Decitabine leads to re-expression of FAS in neoplastic MC, which was confirmed by flow cytometry. Correspondingly, a FAS-specific siRNA was found to block drug-induced expression of FAS and drug-induced apoptosis in HMC-1 cells. Although other key regulators and tumor suppressor molecules such as p16 were also found to be hypermethylated in HMC-1 cells, no major demethylating effects of 5-Azacytidine or Decitabine were seen. Neither 5-Azacytidine nor Decitabine induced substantial apoptosis or growth arrest in normal human cord blood progenitor-derived MC or in control bone marrow cells. Together, our data show that 5-Azacytidine and Decitabine exert growth-inhibitory and pro-apoptotic effects in neoplastic MC. These effects are mediated through FAS re-expression and are augmented by the FAS ligand. Whether epigenetic drugs produce anti-neoplastic effects in vivo in patients with advanced SM including MCL, remains to be determined in clinical trials. Disclosures: Valent: Novartis: Consultancy, Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages