Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Molecular and Cellular Biology, Informa UK Limited, Vol. 32, No. 20 ( 2012-10-01), p. 4104-4115
    Type of Medium: Online Resource
    ISSN: 1098-5549
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2012
    detail.hit.zdb_id: 1474919-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. CT139-CT139
    Abstract: Purpose/Objectives: The human tumor microenvironment (TME) has a dramatic impact on cancer prognosis and therapeutic response, but accurate models of the native TME do not exist. The Comparative In Vivo Oncology (CIVO) platform was developed as a means to assess the effect of investigational agents on the native TME in a Phase 0 microdosing study. CIVO was clinically validated using approved agents and is used for the first time here to assess the impact of an investigational agent - the SUMOylation inhibitor TAK-981 - on the native human TME in HNSCC. Materials/Methods: Eligible subjects have a confirmed HNSCC diagnosis, ECOG 0-2, and planned surgical resection. Injectable tumors were at the primary site or within cervical lymph nodes but had to be surface-accessible and ≥ 2cm. TAK-981 or control microdoses were simultaneously administered via a CIVO device and co-injected with a fluorescent tracking marker for injection site identification and visualization. Tumors were resected 24 or 72 hours after injection, processed, and then analyzed at a central site. Multiplexed biomarker staining and molecular profiling via GeoMx Digital Spatial Profiling were performed to capture pharmacodynamic responses in the native TME. Results: As of January 2022, 8 subjects provided informed consent and were enrolled, and no adverse events associated with the injection procedure or microdoses have been reported. Biomarker analysis demonstrated TAK-981 distribution around the injection site accompanied by reduction of SUMOylation. Dose-dependent elevation of IFN1 signaling was also observed in TAK-981-exposed areas within the TME. Elevated IFN1 signaling was accompanied by TME reconfiguration, with increased macrophage M1 polarization and activation of dendritic cells, NK cells, and CD8+ T cells. TAK-981 exposure was also associated with upregulation of CXCL10, PD-L1, and an IFNγ gene expression signature predictive of response to immune checkpoint blockade. Conclusion: IT microdosing with CIVO provided early insights into complex functional responses induced by the investigational agent TAK-981 that can only be accurately evaluated in the intact, native TME of a patient’s tumor. SUMO pathway inhibition in HNSCC tumors following TAK-981 exposure led to functional activation of multiple immune cell types, effectively shifting the local TME toward an inflamed “hot” state, highlighting TAK-981’s potential as an immune stimulating agent for treating patients with solid tumors. These data were generated while TAK-981 was still in Phase I dose escalation trials (via IV administration), highlighting CIVO’s ability to safely study investigational agents. Further evaluation of TAK-981 alone and in combination with other agents is ongoing in this Phase 0 CIVO microdosing trial. Citation Format: Jeffrey Houlton, Harrison Cash, Haodong Xu, Paul L. Swiecicki, Keith Casper, Steven B. Chinn, Daniel R. Clayburgh, Ryan J. Li, Robert J. Christian, Aaron Halfpenny, Annemieke van Zante, Beryl A. Hatton, Kimberly Sottero, Marc O. Grenley, Connor Burns, Jason Frazier, Jonathan Derry, Gloria Kung, Emily Beirne, Nathan J. Schauer, Atticus Turner, Wendy Jenkins, Kirsten Anderson, Richard A. Klinghoffer, Dennis Huszar, Allison Berger, Karuppiah Kannan. Intratumoral (IT) microdosing of the investigational SUMOylation Inhibitor TAK-981 in a phase 0 CIVO trial demonstrates the reactivation of type I Interferon (IFN1) signaling in head and neck squamous cell carcinoma (HNSCC) [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr CT139.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 64, No. 21 ( 2004-11-01), p. 7794-7800
    Abstract: To develop a genetically faithful model of medulloblastoma with increased tumor incidence compared with the current best model we activated the Sonic Hedgehog (Shh) pathway by transgenically expressing a constitutively active form of Smoothened in mouse cerebellar granule neuron precursors (ND2:SmoA1 mice). This resulted in early cerebellar granule cell hyper-proliferation and a 48% incidence of medulloblastoma formation. Gene expression studies showed an increase in the known Shh targets Gli1 and Nmyc that correlated with increasing hyperplasia and tumor formation. Notch2 and the Notch target gene, HES5, were also significantly elevated in Smoothened-induced tumors showing that Shh pathway activation is sufficient to induce Notch pathway signaling. In human medulloblastomas reverse transcription-PCR for Shh and Notch targets revealed activation of both of these pathways in most tumors when compared with normal cerebellum. Notch pathway inhibition with soluble Delta ligand or γ secretase inhibitors resulted in a marked reduction of viable cell numbers in medulloblastoma cell lines and primary tumor cultures. Treatment of mice with D283 medulloblastoma xenografts with a γ secretase inhibitor resulted in decreased proliferation and increased apoptosis, confirming that Notch signaling contributes to human medulloblastoma proliferation and survival. Medulloblastomas in ND2:SmoA1 mice and humans have concomitant increase in Shh and Notch pathway activities, both of which contribute to tumor survival.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2004
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 66, No. 17 ( 2006-09-01), p. 8655-8661
    Abstract: We examined the genetic requirements for the Myc family of oncogenes in normal Sonic hedgehog (Shh)–mediated cerebellar granule neuronal precursor (GNP) expansion and in Shh pathway–induced medulloblastoma formation. In GNP-enriched cultures derived from N-mycFl/Fl and c-mycFl/Fl mice, disruption of N-myc, but not c-myc, inhibited the proliferative response to Shh. Conditional deletion of c-myc revealed that, although it is necessary for the general regulation of brain growth, it is less important for cerebellar development and GNP expansion than N-myc. In vivo analysis of compound mutants carrying the conditional N-myc null and the activated Smoothened (ND2:SmoA1) alleles showed, that although granule cells expressing the ND2:SmoA1 transgene are present in the N-myc null cerebellum, no hyperproliferation or tumor formation was detected. Taken together, these findings provide in vivo evidence that N-myc acts downstream of Shh/Smo signaling during GNP proliferation and that N-myc is required for medulloblastoma genesis even in the presence of constitutively active signaling from the Shh pathway. (Cancer Res 2006; 66(17): 8655-61)
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2006
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 109, No. 20 ( 2012-05-15), p. 7859-7864
    Abstract: The Sonic Hedgehog (Shh) pathway drives a subset of medulloblastomas, a malignant neuroectodermal brain cancer, and other cancers. Small-molecule Shh pathway inhibitors have induced tumor regression in mice and patients with medulloblastoma; however, drug resistance rapidly emerges, in some cases via de novo mutation of the drug target. Here we assess the response and resistance mechanisms to the natural product derivative saridegib in an aggressive Shh-driven mouse medulloblastoma model. In this model, saridegib treatment induced tumor reduction and significantly prolonged survival. Furthermore, the effect of saridegib on tumor-initiating capacity was demonstrated by reduced tumor incidence, slower growth, and spontaneous tumor regression that occurred in allografts generated from previously treated autochthonous medulloblastomas compared with those from untreated donors. Saridegib, a known P-glycoprotein (Pgp) substrate, induced Pgp activity in treated tumors, which likely contributed to emergence of drug resistance. Unlike other Smoothened (Smo) inhibitors, the drug resistance was neither mutation-dependent nor Gli2 amplification-dependent, and saridegib was found to be active in cells with the D473H point mutation that rendered them resistant to another Smo inhibitor, GDC-0449. The fivefold increase in lifespan in mice treated with saridegib as a single agent compares favorably with both targeted and cytotoxic therapies. The absence of genetic mutations that confer resistance distinguishes saridegib from other Smo inhibitors.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2012
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Science Translational Medicine, American Association for the Advancement of Science (AAAS), Vol. 7, No. 284 ( 2015-04-22)
    Abstract: A fundamental problem in cancer drug development is that antitumor efficacy in preclinical cancer models does not translate faithfully to patient outcomes. Much of early cancer drug discovery is performed under in vitro conditions in cell-based models that poorly represent actual malignancies. To address this inconsistency, we have developed a technology platform called CIVO, which enables simultaneous assessment of up to eight drugs or drug combinations within a single solid tumor in vivo. The platform is currently designed for use in animal models of cancer and patients with superficial tumors but can be modified for investigation of deeper-seated malignancies. In xenograft lymphoma models, CIVO microinjection of well-characterized anticancer agents (vincristine, doxorubicin, mafosfamide, and prednisolone) induced spatially defined cellular changes around sites of drug exposure, specific to the known mechanisms of action of each drug. The observed localized responses predicted responses to systemically delivered drugs in animals. In pair-matched lymphoma models, CIVO correctly demonstrated tumor resistance to doxorubicin and vincristine and an unexpected enhanced sensitivity to mafosfamide in multidrug-resistant lymphomas compared with chemotherapy-naïve lymphomas. A CIVO-enabled in vivo screen of 97 approved oncology agents revealed a novel mTOR (mammalian target of rapamycin) pathway inhibitor that exhibits significantly increased tumor-killing activity in the drug-resistant setting compared with chemotherapy-naïve tumors. Finally, feasibility studies to assess the use of CIVO in human and canine patients demonstrated that microinjection of drugs is toxicity-sparing while inducing robust, easily tracked, drug-specific responses in autochthonous tumors, setting the stage for further application of this technology in clinical trials.
    Type of Medium: Online Resource
    ISSN: 1946-6234 , 1946-6242
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2015
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Magnetic Resonance in Medicine, Wiley, Vol. 76, No. 3 ( 2016-09), p. 946-952
    Abstract: To facilitate decision making in the oncology clinic, technologies have recently been developed to independently inject and assess multiple anticancer agents directly in a patient's tumor. To increase the flexibility of this approach beyond histological readouts of response, contrast‐enhanced MRI was evaluated for the detection of cell death in living tumors after injection. Methods A six‐needle arrayed microinjection device designed to provide head‐to‐head comparisons of chemotherapy responses in living tumors was used. Xenografted non‐Hodgkin lymphoma tumors in athymic Nude‐Foxn1 nu mice were injected either with different doses of vincristine or with one needle each of vincristine, doxorubicin, bendamustine, prednisolone, mafosfamide, and a vehicle control. To assess drug responses, measurements of enhancement by T1‐weighted contrast‐enhanced MRI were made for individual sites at 24, 48, and 72 h after injection. For comparison, histological evaluations of cell death were obtained after tumor resection. Results Measurements of MRI enhancement at injection sites showed a significant ( P   〈  0.001) positive regression slope as a function of vincristine dose. Average MRI measurements were closely correlated with cell death by hematoxylin and eosin staining (R = 0.81; P  = 0.001). Conclusion Contrast‐enhanced MRI has the potential to replace or augment histological analyses of tumor responses to microinjected doses of chemotherapy agents with potential application in selecting optimal chemotherapy regimens. Magn Reson Med 76:946–952, 2016. © 2015 Wiley Periodicals, Inc.
    Type of Medium: Online Resource
    ISSN: 0740-3194 , 1522-2594
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2016
    detail.hit.zdb_id: 1493786-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Informa UK Limited ; 1937
    In:  Journal of Pomology and Horticultural Science Vol. 14, No. 4 ( 1937-01), p. 376-390
    In: Journal of Pomology and Horticultural Science, Informa UK Limited, Vol. 14, No. 4 ( 1937-01), p. 376-390
    Type of Medium: Online Resource
    ISSN: 0368-3621
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 1937
    detail.hit.zdb_id: 2048270-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 68, No. 6 ( 2008-03-15), p. 1768-1776
    Abstract: Toward the goal of generating a mouse medulloblastoma model with increased tumor incidence, we developed a homozygous version of our ND2:SmoA1 model. Medulloblastomas form in 94% of homozygous Smo/Smo mice by 2 months of age. Tumor formation is, thus, predictable by age, before the symptomatic appearance of larger lesions. This high incidence and early onset of tumors is ideal for preclinical studies because mice can be enrolled before symptom onset and with a greater latency period before late-stage disease. Smo/Smo tumors also display leptomeningeal dissemination of neoplastic cells to the brain and spine, which occurs in many human cases. Despite an extended proliferation of granule neuron precursors (GNP) in the postnatal external granular layer (EGL), the internal granular layer formed normally in Smo/Smo mice and tumor formation occurred only in localized foci on the superficial surface of the molecular layer. Thus, tumor formation is not simply the result of over proliferation of GNPs within the EGL. Moreover, Smo/Smo medulloblastomas were transplantable and serially passaged in vivo, demonstrating the aggressiveness of tumor cells and their transformation beyond a hyperplastic state. The Smo/Smo model is the first mouse medulloblastoma model to show leptomeningeal spread. The adherence to human pathology, high incidence, and early onset of tumors thus make Smo/Smo mice an efficient model for preclinical studies. [Cancer Res 2008;68(6):1768–76]
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2008
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2013
    In:  Biomarker Research Vol. 1, No. 1 ( 2013-12)
    In: Biomarker Research, Springer Science and Business Media LLC, Vol. 1, No. 1 ( 2013-12)
    Abstract: The cyclin-dependent kinase inhibitor p27 Kip1 functions during normal cerebellar development and has demonstrated tumor suppressor functions in mouse models of medulloblastoma. Because P27 loss is associated with increased proliferation, we assessed whether P27 absence in surgical medulloblastoma specimens correlated with response to therapy in pediatric patients enrolled in two large studies. Additionally, we examined the functional consequence of p27 Kip1 loss in the SmoA1 medulloblastoma model to distinguish whether p27 Kip1 reduces tumor initiation or slows tumor progression. Findings Analysis of 87 well-characterized patient samples identified a threshold of P27 staining at which significant P27 loss correlated with poor patient outcome. The same criteria, applied to a second test set of tissues from 141 patients showed no difference in survival between patients with minimal P27 staining and others, suggesting that P27 levels alone are not a sufficient prognostic indicator for identifying standard-risk patients that may fail standard therapy. These findings were in contrast to prior experiments completed using a mouse medulloblastoma model. Analysis of cerebellar tumor incidence in compound mutant mice carrying the activated Smoothened ( SmoA1 ) allele that were heterozygous or nullizygous for p27 Kip1 revealed that p27 Kip1 loss did not alter the frequency of tumor initiation. Tumors haploinsufficient or nullizygous for p27 Kip1 were, however, more invasive and displayed a higher proliferative index, suggesting p27 Kip1 loss may contribute to SmoA1 medulloblastoma progression. Conclusions These studies revealed P27 loss affects medulloblastoma progression rather than initiation and that this putative biomarker should not be used for stratifying children with medulloblastoma to risk-based therapeutic regimens.
    Type of Medium: Online Resource
    ISSN: 2050-7771
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2013
    detail.hit.zdb_id: 2699926-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages