Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 42, No. 12 ( 2015-06-28), p. 4981-4988
    Abstract: Lake bottom warming rates are dampened compared to surface warming rates Stratification responses to climate controlled by lake morphometry Tropical lake stratification is most sensitive to warming
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    URL: Issue
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2015
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Aquatic Invasions, Regional Euro-Asian Biological Invasions Centre Oy (REABIC), Vol. 17, No. 2 ( 2022), p. 153-173
    Type of Medium: Online Resource
    ISSN: 1818-5487
    URL: Issue
    Language: Unknown
    Publisher: Regional Euro-Asian Biological Invasions Centre Oy (REABIC)
    Publication Date: 2022
    detail.hit.zdb_id: 2381496-2
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2023
    In:  Bulletin of the American Meteorological Society Vol. 104, No. 9 ( 2023-09), p. S1-S10
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 104, No. 9 ( 2023-09), p. S1-S10
    Abstract: —J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases. In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022. Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record. While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia. The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations. In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old. In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February. Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded. A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported. As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items. In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities. On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 11, No. 1 ( 2020-05-20)
    Abstract: Globally, our knowledge on lake fisheries is still limited despite their importance to food security and livelihoods. Here we show that fish catches can respond either positively or negatively to climate and land-use changes, by analyzing time-series data (1970–2014) for 31 lakes across five continents. We find that effects of a climate or land-use driver (e.g., air temperature) on lake environment could be relatively consistent in directions, but consequential changes in a lake-environmental factor (e.g., water temperature) could result in either increases or decreases in fish catch in a given lake. A subsequent correlation analysis indicates that reductions in fish catch was less likely to occur in response to potential climate and land-use changes if a lake is located in a region with greater access to clean water. This finding suggests that adequate investments for water-quality protection and water-use efficiency can provide additional benefits to lake fisheries and food security.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2553671-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Hydrology and Earth System Sciences, Copernicus GmbH, Vol. 27, No. 3 ( 2023-02-16), p. 837-859
    Abstract: Abstract. Long-term effects of climate change on lakes globally will include a substantial modification in the thermal regime and the oxygen solubility of lakes, resulting in the alteration of ecosystem processes, habitats, and concentrations of critical substances. Recent efforts have led to the development of long-term model projections of climate change effects on lake thermal regimes and oxygen solubility. However, such projections are hardly ever confronted with observations extending over multiple decades. Furthermore, global-scale forcing parameters in lake models present several limitations, such as the need of significant downscaling. In this study, the effects of climate change on thermal regime and oxygen solubility were analyzed in the four largest French peri-alpine lakes over 1850–2100. We tested several one-dimensional (1D) lake models' robustness for long-term variations based on up to 63 years of limnological data collected by the French Observatory of LAkes (OLA). Here, we evaluate the possibility of forcing mechanistic models by following the long-term evolution of shortwave radiation and air temperature while providing realistic seasonal trends for the other variables for which local-scale downscaling often lacks accuracy. Based on this approach, MyLake, forced by air temperatures and shortwave radiations, predicted accurately the variations in the lake thermal regime over the last 4 to 6 decades, with RMSE 〈 1.95 ∘C. Over the previous 3 decades, water temperatures have increased by 0.46 ∘C per decade (±0.02 ∘C) in the epilimnion and 0.33 ∘C per decade (±0.06 ∘C) in the hypolimnion. Concomitantly and due to thermal change, O2 solubility has decreased by −0.104 mg L−1 per decade (±0.005 mg L−1) and −0.096 mg L−1 per decade (±0.011 mg L−1) in the epilimnion and hypolimnion, respectively. Based on the shared socio-economic pathway SSP370 of the Intergovernmental Panel on Climate Change (IPCC), peri-alpine lakes could face an increase of 3.80 ∘C (±0.20 ∘C) in the next 70 years, accompanied by a decline of 1.0 mg L−1 (±0.1 mg L−1) of O2 solubility. Together, these results highlight a critical alteration in lake thermal and oxygen conditions in the coming decades, and a need for a better integration of long-term lake observatories data and lake models to anticipate climate effects on lake thermal regimes and habitats.
    Type of Medium: Online Resource
    ISSN: 1607-7938
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2100610-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Limnology, PAGEPress Publications, Vol. 82 ( 2023-06-08)
    Abstract: Synchronic variations in abundance in populations of the same species are common phenomena encountered in various environments, including lakes, and different taxa of freshwater fishes. This phenomenon can be caused by similar environmental conditions across physically separated populations. In the context of the ongoing climate change, it is essential to test this hypothesis, identify the factors driving the synchrony and elucidate the mechanisms, in the attempt to improve fisheries management. This study investigates synchronic variations in European whitefish (Coregonus spp.) populations in five peri-alpine lakes. The hypothesis suggests that shared biotic or abiotic factors contribute to similar trends in whitefish landings. Environmental and seasonal variables impacting the early life stages of the species were analyzed, and the Euclidean distances between the multivariate time series were calculated to identify similarities or dissimilarities in lake environmental parameters. We found that regional winter and spring temperatures were consistent across the lakes, but these factors did not fully account for variations in landings statistics. Wind intensity, water level and zooplankton abundance showed lake-specific patterns that could better explain local conditions and dynamics. Linear models did not reveal a coherent correlation with a common environmental variable across all lakes. However, distinct relationships were found in four of the lakes, with local factors significantly contributing to abundance variations. The spring abundance of Daphnia spp., a primary food source for whitefish larvae, was the main factor correlated with fish landing trends in Lake Geneva and Lake Bourget. Higher availability of Daphnia spp. may decrease intraspecific competition and density-dependent mortality. In Lake Neuchâtel, winter water temperature was negatively correlated with fish abundance proxies, suggesting that warmer winters may compromise reproduction success. Lake Annecy saw an increase in whitefish landings following a substantial reduction in fishing efforts during the late 2000s. A significant negative correlation was found between whitefish landings and fishing efforts. No relationship was found for Lake Aiguebelette, maybe due to a lack of zooplankton data. In conclusion, the observed synchrony in the European whitefish population is likely driven by a combination of interacting environmental and anthropogenic factors rather than a single common variable. Further research and a more detailed dataset are needed to better understand these complex relationships.   Cover image: Whitefish (courtesy of Rémi Masson)
    Type of Medium: Online Resource
    ISSN: 1723-8633 , 1129-5767
    Language: Unknown
    Publisher: PAGEPress Publications
    Publication Date: 2023
    detail.hit.zdb_id: 2034229-9
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Limnology, PAGEPress Publications, ( 2017-06-27)
    Abstract: 〈 p 〉 Through cascading effects within lake food webs, commercial and recreational fisheries may indirectly affect the abundances of organisms at lower trophic levels, such as phytoplankton, even if they are not directly consumed. So far, interactive effects of fisheries, changing trophic state and climate upon lake ecosystems have been largely overlooked. Here we analyse case studies from five European lake basins of differing trophic states (Lake Võrtsjärv, two basins of Windermere, Lake Geneva and Lake Maggiore) with long-term limnological and fisheries data. Decreasing phosphorus concentrations (re-oligotrophication) and increasing water temperatures have been reported in all five lake basins, while phytoplankton concentration has decreased only slightly or even increased in some cases. To examine possible ecosystem-scale effects of fisheries, we analysed correlations between fish and fisheries data, and other food web components and environmental factors. Re-oligotrophication over different ranges of the trophic scale induced different fish responsesIn the deeper lakes Geneva and Maggiore, we found a stronger link between phytoplankton and planktivorous fish and thus a more important cascading top-down effect than in other lakes. This connection makes careful ecosystem-based fisheries management extremely important for maintaining high water quality in such systems. We also demonstrated that increasing water temperature might favour piscivores at low phosphorus loading, but suppresses them at high phosphorus loading and might thus either enhance or diminish the cascading top-down control over phytoplankton with strong implications for water quality. 〈 /p 〉
    Type of Medium: Online Resource
    ISSN: 1723-8633 , 1129-5767
    Language: Unknown
    Publisher: PAGEPress Publications
    Publication Date: 2017
    detail.hit.zdb_id: 2034229-9
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Elsevier BV ; 2006
    In:  Acta Oecologica Vol. 30, No. 2 ( 2006-9), p. 161-167
    In: Acta Oecologica, Elsevier BV, Vol. 30, No. 2 ( 2006-9), p. 161-167
    Type of Medium: Online Resource
    ISSN: 1146-609X
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2006
    detail.hit.zdb_id: 2003658-9
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2012
    In:  Ecotoxicology Vol. 21, No. 7 ( 2012-10), p. 1788-1796
    In: Ecotoxicology, Springer Science and Business Media LLC, Vol. 21, No. 7 ( 2012-10), p. 1788-1796
    Type of Medium: Online Resource
    ISSN: 0963-9292 , 1573-3017
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2012
    detail.hit.zdb_id: 2000882-X
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Ecotoxicology, Springer Science and Business Media LLC, Vol. 21, No. 8 ( 2012-11), p. 2306-2318
    Type of Medium: Online Resource
    ISSN: 0963-9292 , 1573-3017
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2012
    detail.hit.zdb_id: 2000882-X
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages