Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    The American Association of Immunologists ; 2014
    In:  The Journal of Immunology Vol. 192, No. 7 ( 2014-04-01), p. 3247-3258
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 192, No. 7 ( 2014-04-01), p. 3247-3258
    Abstract: CD4 T cells are crucial to the control of Mycobacterium tuberculosis infection and are a key component of current vaccine strategies. Conversely, immune-mediated pathology drives disease, and recent evidence suggests that adaptive and innate responses are evolutionarily beneficial to M. tuberculosis. We compare the functionality of CD4 T cell responses mounted against dominant and cryptic epitopes of the M. tuberculosis 6-kDa early secreted Ag (ESAT-6) before and postinfection. Protective T cells against cryptic epitopes not targeted during natural infection were induced by vaccinating mice with a truncated ESAT-6 protein, lacking the dominant epitope. The ability to generate T cells that recognize multiple cryptic epitopes was MHC-haplotype dependent, including increased potential via heterologous MHC class II dimers. Before infection, cryptic epitope–specific T cells displayed enhanced proliferative capacity and delayed cytokine kinetics. After aerosol M. tuberculosis challenge, vaccine-elicited CD4 T cells expanded and recruited to the lung. In chronic infection, dominant epitope–specific T cells developed a terminal differentiated KLRG1+/PD-1lo surface phenotype that was significantly reduced in the cryptic epitope–specific T cell populations. Dominant epitope-specific T cells in vaccinated animals developed into IFN-γ– and IFN-γ,TNF-α–coproducing effector cells, characteristic of the endogenous response. In contrast, cryptic epitope–specific CD4 T cells maintained significantly greater IFN-γ+TNF-α+IL-2+ and TNF-α+IL-2+ memory-associated polyfunctionality and enhanced proliferative capacity. Vaccine-associated IL-17A production by cryptic CD4 T cells was also enhanced, but without increased neutrophilia/pathology. Direct comparison of dominant/cryptic epitope–specific CD4 T cells within covaccinated mice confirmed the superior ability of protective cryptic epitope–specific T cells to resist M. tuberculosis infection–driven T cell differentiation.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2014
    detail.hit.zdb_id: 1475085-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    The American Association of Immunologists ; 2009
    In:  The Journal of Immunology Vol. 183, No. 4 ( 2009-08-15), p. 2659-2668
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 183, No. 4 ( 2009-08-15), p. 2659-2668
    Abstract: The ESAT-6 (early secretory antigenic target) molecule is a very important target for T cell recognition during infection with Mycobacterium tuberculosis. Although ESAT-6 contains numerous potential T cell epitopes, the immune response during infection is often focused toward a few immunodominant epitopes. By immunization with individual overlapping synthetic peptides in cationic liposomes (cationic adjuvant formulation, CAF01) we demonstrate that the ESAT-6 molecule contains several subdominant epitopes that are not recognized in H-2d/b mice either during tuberculosis infection or after immunization with ESAT-6/CAF01. Immunization with a truncated ESAT-6 molecule (Δ15ESAT-6) that lacks the immunodominant ESAT-61–15 epitope refocuses the response to include T cells directed to these subdominant epitopes. After aerosol infection of immunized mice, T cells directed to both dominant (ESAT-6-immunized) and subdominant epitopes (Δ15ESAT-6-immunized) proliferate and are recruited to the lung. The vaccine-promoted response consists mainly of double- (TNF-α and IL-2) or triple-positive (IFN-γ, TNF-α, and IL-2) polyfunctional T cells. This polyfunctional quality of the CD4+ T cell response is maintained unchanged even during the later stages of infection, whereas the naturally occurring infection stimulates a response to the ESAT-61–15 epitope that consist almost exclusively of CD4+ effector T cells. ESAT-6 and Δ15ESAT-6 both give significant protection against aerosol challenge with tuberculosis, but the most efficient protection against pulmonary infection is mediated by the subdominant T cell repertoire primed by Δ15ESAT-6.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2009
    detail.hit.zdb_id: 1475085-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages