Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Circulation Research, Ovid Technologies (Wolters Kluwer Health), Vol. 129, No. Suppl_1 ( 2021-09-03)
    Abstract: Cardiomyopathies caused by mutations in LMNA, encoding nuclear Lamin A/C, are highly malignant and prevalent. How LMNA mutations cause cardiomyopathies remains unknown. We characterized cellular, molecular, and pathological evolution of mouse models of LMNA -related cardiomyopathy and provide evidence for a model in which nuclear rupture generates nuclear-localized proinflammatory signaling as a candidate molecular mechanism underlying disease pathogenesis. We observed that cardiomyocyte-specific, tamoxifen-inducible deletion of Lmna in adult mice ( Lmna CMKO ) caused a gradual reduction of Lamin A/C protein at the nuclear lamina, reflecting the slow turnover of Lamin A/C. A modest reduction of Lamin A/C in Lmna CMKO was sufficient to cause extensive fibrosis, reduced ejection fraction, and chamber dilation by 3 weeks after Lmna gene deletion. Lmna CMKO cardiomyocytes exhibited localized rupture of the nuclear envelope 2 weeks prior to the development of fibrosis and reduction of ejection fraction. Nuclear rupture in Lmna CMKO was immediately followed by an extensive upregulation of pro-inflammatory gene expression programs. We hypothesized that nuclear rupture might expose nuclear DNA to the cytoplasm thereby activating the pro-inflammatory cGas-STING cytosolic DNA sensing pathway. However, we did not observe localization of the cytosolic DNA sensor cGas to cytoplasmic DNA protruded from the ruptured nuclei in Lmna CMKO cardiomyocytes. Instead, we found that HMGB1, a potent proinflammatory protein normally sequestered in the nucleus, was released from the ruptured nuclei in Lmna CMKO cardiomyocytes. Mass spectrometry identified a strong interaction between Lamin A/C and HMGB1 in normal human fibroblast cells. Our data suggested that Lamin A/C tethers HMGB1 to the nuclear periphery by direct interaction and that reduction of Lamin A/C unleashes HMGB1 to the cytoplasm upon nuclear rupture. Future work will examine the hypothesis that cytoplasmic HMGB1 triggers pathogenic sterile inflammation leading to dilated cardiomyopathies in Lmna CMKO mice. In conclusion, we identified the nuclear rupture-induced cytoplasmic release of HMGB1 as a candidate mechanism underlying LMNA -related cardiomyopathies.
    Type of Medium: Online Resource
    ISSN: 0009-7330 , 1524-4571
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2021
    detail.hit.zdb_id: 1467838-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Developmental Cell, Elsevier BV, Vol. 52, No. 6 ( 2020-03), p. 699-713.e11
    Type of Medium: Online Resource
    ISSN: 1534-5807
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2020
    detail.hit.zdb_id: 2053870-4
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2020
    In:  Circulation Research Vol. 127, No. Suppl_1 ( 2020-07-31)
    In: Circulation Research, Ovid Technologies (Wolters Kluwer Health), Vol. 127, No. Suppl_1 ( 2020-07-31)
    Abstract: The segregation of heterochromatin domains (LADs) at the nuclear periphery by the nuclear lamina, composed by polymerized nuclear Lamin A/C, provides a longstanding paradigm for the control of gene expression and for the mechanisms underlying Lamin-A/C-associated disorders, including progeria and cardiomyopathy. Here, we provide evidence supporting a novel paradigm that Lamin A/C functions as a transcription factor in the nuclear interior. We discovered that Ser22-phosphorylated Lamin A/C (pS22-Lamin A/C), required for lamin depolymerization during mitosis, populated the nuclear interior throughout the cell cycle. pS22-Lamin A/C ChIP-deq demonstrated localization at a large subset of putative active enhancers, not LADs. pS22-Lamin A/C-binding sites were co-occupied by the transcriptional activator c-Jun. In progeria patient-derived fibroblasts, a subset of pS22-Lamin A/C-binding sites were lost whereas new pS22-Lamin A/C-binding sites emerged. New pS22-Lamin A/C binding was accompanied by increased histone acetylation and increased c-Jun binding, whereas loss of pS22-Lamin A/C-binding was accompanied by loss of histone acetylation and c-Jun binding. New pS22-Lamin A/C enhancer binding in progeria was associated with upregulated expression of genes implicated in progeria pathophysiology, including cardiovascular disease. In contrast, alteration of LADs in progeria-patient cells could not explain the observed gene expression changes. These results suggest that Lamin A/C regulates gene expression by enhancer binding in the nuclear interior, independent of its function at the nuclear lamina, providing a new paradigm for the pathogenesis of lamin-associated disorders. pS22-Lamin A/C was also present in the nuclear interior of adult mouse cardiomyocytes. Cardiomyocyte-specific deletion of Lmna encoding Lamin A/C in adult mice caused extensive transcriptional changes in the heart and dilated cardiomyopathy, without apparent reduction of nuclear peripheral Lamin A/C. Disruption of the gene regulatory rather than LAD tethering function of Lamin A/C may underlie the pathogenesis of disorders caused by LMNA mutations, including cardiomyopathy.
    Type of Medium: Online Resource
    ISSN: 0009-7330 , 1524-4571
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2020
    detail.hit.zdb_id: 1467838-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages