Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Frontiers Media SA ; 2023
    In:  Frontiers in Cellular and Infection Microbiology Vol. 13 ( 2023-6-19)
    In: Frontiers in Cellular and Infection Microbiology, Frontiers Media SA, Vol. 13 ( 2023-6-19)
    Abstract: Bacterial vaginosis (BV) is the most common vaginal dysbiosis. In this condition, a polymicrobial biofilm develops on vaginal epithelial cells. Accurately quantifying the bacterial burden of the BV biofilm is necessary to further our understanding of BV pathogenesis. Historically, the standard for calculating total bacterial burden of the BV biofilm has been based on quantifying Escherichia coli 16S rRNA gene copy number. However, E. coli is improper for measuring the bacterial burden of this unique micro-environment. Here, we propose a novel qPCR standard to quantify bacterial burden in vaginal microbial communities, from an optimal state to a mature BV biofilm. These standards consist of different combinations of vaginal bacteria including three common BV-associated bacteria (BVAB) Gardnerella spp. (G), Prevotella spp. (P), and Fannyhessea spp. (F) and commensal Lactobacillus spp. (L) using the 16S rRNA gene (G:P:F:L, G:P:F, G:P:L and 1G:9L). We compared these standards to the traditional E. coli (E) reference standard using known quantities of mock vaginal communities and 16 vaginal samples from women. The E standard significantly underestimated the copy numbers of the mock communities, and this underestimation was significantly greater at lower copy numbers of these communities. The G:P:L standard was the most accurate across all mock communities and when compared to other mixed vaginal standards. Mixed vaginal standards were further validated with vaginal samples. This new G:P:L standard can be used in BV pathogenesis research to enhance reproducibility and reliability in quantitative measurements of BVAB, spanning from the optimal to non-optimal (including BV) vaginal microbiota.
    Type of Medium: Online Resource
    ISSN: 2235-2988
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2619676-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Frontiers Media SA ; 2021
    In:  Frontiers in Cellular and Infection Microbiology Vol. 11 ( 2021-4-12)
    In: Frontiers in Cellular and Infection Microbiology, Frontiers Media SA, Vol. 11 ( 2021-4-12)
    Abstract: In vitro studies indicate IFNγ is central to Chlamydia trachomatis (Ct) eradication, but its function may be compromised by anaerobes typically associated with bacterial vaginosis (BV), a frequent co-morbidity in women with Ct. Here we investigated the associations between natural clearance of cervical Ct infection, the vaginal microbiome, and the requirements for IFNγ by evaluating the vaginal microbial and cytokine composition of Ct treatment visit samples from women who cleared Ct infection in the interim between their Ct screening and Ct treatment visit. The pilot cohort was young, predominantly African American, and characterized by a high rate of BV that was treated with metronidazole at the Ct screening visit. The rate of natural Ct clearance was 23.6% by the Ct treatment visit (median 9 days). 16S rRNA gene sequencing revealed that metronidazole-treated women who had a Lactobacillus spp.-dominant vaginal microbiota (CST 2 or 3) at the Ct treatment visit, were more prevalent in the Ct clearing population than the non-clearing population (86% v. 50%). L. iners (CST2) was the major Lactobacillus spp. present in Ct clearers, and 33% still remained anaerobe-dominant (CST1). Vaginal IFNγ levels were not significantly different in Ct clearers and non-clearers and were several logs lower than that required for killing Ct in vitro. An expanded panel of IFNγ-induced and proinflammatory cytokines and chemokines also did not reveal differences between Ct clearers and non-clearers, but, rather, suggested signatures better associated with specific CSTs. Taken together, these findings suggest that BV-associated bacteria may impede Ct clearance, but a Lactobacillus spp.-dominant microbiome is not an absolute requirement to clear. Further, IFNγ may be required at lower concentrations than in vitro modeling indicates, suggesting it may act together with other factors in vivo . Data also revealed that the vaginal bacteria-driven inflammation add complexity to the genital cytokine milieu, but changes in this microbiota may contribute to, or provide cytokine biomarkers, for a shift to Ct clearance.
    Type of Medium: Online Resource
    ISSN: 2235-2988
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2021
    detail.hit.zdb_id: 2619676-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Sexually Transmitted Diseases, Ovid Technologies (Wolters Kluwer Health), Vol. 50, No. 8 ( 2023-8), p. 523-530
    Abstract: Despite more than 60 years of research, the etiology of bacterial vaginosis (BV) remains controversial. In this pilot study, we used shotgun metagenomic sequencing to characterize vaginal microbial community changes before the development of incident BV (iBV). Methods A cohort of African American women with a baseline healthy vaginal microbiome (no Amsel criteria, Nugent score 0–3 with no Gardnerella vaginalis morphotypes) were followed for 90 days with daily self-collected vaginal specimens for iBV (≥2 consecutive days of a Nugent score of 7–10). Shotgun metagenomic sequencing was performed on select vaginal specimens from 4 women, every other day for 12 days before iBV diagnosis. Sequencing data were analyzed through Kraken2 and bioBakery 3 workflows, and specimens were classified into community state types. Quantitative polymerase chain reaction was performed to compare the correlation of read counts with bacterial abundance. Results Common BV-associated bacteria such as G. vaginalis , Prevotella bivia , and Fannyhessea vaginae were increasingly identified in the participants before iBV. Linear modeling indicated significant increases in G. vaginalis and F . vaginae relative abundance before iBV, whereas the relative abundance of Lactobacillus species declined over time. The Lactobacillus species decline correlated with the presence of Lactobacillus phages. We observed enrichment in bacterial adhesion factor genes on days before iBV. There were also significant correlations between bacterial read counts and abundances measured by quantitative polymerase chain reaction. Conclusions This pilot study characterizes vaginal community dynamics before iBV and identifies key bacterial taxa and mechanisms potentially involved in the pathogenesis of iBV.
    Type of Medium: Online Resource
    ISSN: 1537-4521 , 0148-5717
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2023
    detail.hit.zdb_id: 2055170-8
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: PLOS ONE, Public Library of Science (PLoS), Vol. 16, No. 10 ( 2021-10-18), p. e0258759-
    Abstract: The endocervix, the primary site of Chlamydia trachomatis (Ct) infection in women, has a unique repertoire of locally synthesized IgG and secretory IgA (SIgA) with contributions from serum IgG. Here, we assessed the ability of genital and serum-derived IgG and IgA from women with a recent positive Ct test to neutralize Ct elementary bodies (EBs) and inhibit inclusion formation in vitro in human endocervical epithelial cells. We also determined if neutralization was influenced by the major outer membrane protein (MOMP) of the infecting strain, as indicated by ompA gene sequencing and genotyping. At equivalent low concentrations of Ct EB (D/UW-3/Cx + E/UW-5/Cx)-specific antibody, genital-derived IgG and IgA and serum IgA, but not serum IgG, significantly inhibited inclusion formation, with genital IgA being most effective, followed by genital IgG, then serum IgA. The well-characterized Ct genotype D strain, D/UW-3/Cx, was neutralized by serum-derived IgG from patients infected with genotype D strains, genital IgG from patients infected with genotype D or E strains, and by genital IgA from patients infected with genotype D, E, or F strains. Additionally, inhibition of D/UW-3/Cx infection by whole serum, rather than purified immunoglobulin, was associated with levels of serum EB-specific IgG rather than the genotype of infecting strain. In contrast, a Ct genotype Ia clinical isolate, Ia/LSU-56/Cx, was neutralized by whole serum in a genotype and genogroup-specific manner, and inhibition also correlated with EB-specific IgG concentrations in serum. Taken together, these data suggest that (i) genital IgA most effectively inhibits Ct infection in vitro , (ii) human antibody-mediated inhibition of Ct infection is significantly influenced by the ompA genotype of the infecting strain, (iii) the genital antibody repertoire develops or matures differently compared to systemic antibody, and (iv) ompA genotype-specificity of inhibition of infection by whole serum can be overcome by high concentrations of Ct-specific IgG.
    Type of Medium: Online Resource
    ISSN: 1932-6203
    Language: English
    Publisher: Public Library of Science (PLoS)
    Publication Date: 2021
    detail.hit.zdb_id: 2267670-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages