Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 108, No. 11 ( 2006-11-16), p. 7-7
    Abstract: In AML the translocation t(12;13)(p13;q12) results in the ectopic expression of the homeobox gene Cdx2 and the expression of the ETV6-CDX2 fusion. We have shown that the ectopic expression of the proto-oncogene Cdx2 and not the expression of the ETV6-CDX2 fusion is the key event in initiating myeloid leukemogenesis in a murine model of t(12;13) AML (PNAS, Rawat et. al. 2004). We now analyzed the functional relevance of the different Cdx2 domains and explored the potential of kinase inhibitors to antagonize Cdx2 induced leukemia. For this we generated different mutants, inactivating the PBX1-interacting motif (W167A-Cdx2), or deleting the N-terminal transactivation domain (Ndel-Cdx2). Expression of Cdx2 and the different mutants was induced in primary murine BM cells by retroviral gene transfer. Target genes were identified by cDNA microarray analysis. Mice transplanted with BM cells expressing Cdx2 and its W167A-Cdx2 mutant developed transplantable AML (n=14, avg. latency 90 days). In contrast, mice transplanted with the NDel-Cdx2 mutant did not show any leukemic phenotype in vivo (n=13). In order to identify gene expression signatures associated with Cdx2 induced transformation, we performed microarray analysis on highly purified normal Sca1+/lin− HSC and Sca1+/lin+ progenitor cells transduced with the leukemogenic Cdx2 compared to the non-leukemogenic NDel-Cdx2 mutant and the GFP control vector after 72h of retrovirally induced expression of the different constructs. Compared to the NDel-Cdx2 mutant and the GFP control Cdx2 up regulated genes, which are associated with self-renewal (Wint2, Hoxb3, Etv6, Abcg2,), leukemogenesis (Lmo2, Pim-2, Hoxa9) and in signal transduction pathways (e.g. MAPK family). In addition, Cdx2 transduced BM cells showed an activated Erk1/2 pathway on the protein level. Based on these results we tested whether inhibition of the MAPK pathway would impair the leukemogenic potential of Cdx2. When Cdx2 transduced BM cells were incubated with the MEK1/2 inhibitor PD98059, a 78% reduction of viable cells (n=3, p & lt;0.03) and of the proportion of blast-like Sca1+ positive cells were observed compared to untreated cells (n=3, p & lt;0.005) in liquid culture after 7 days. Furthermore, incubation with the MEK1/2 inhibitor PD98059 decreased the activity of Cdx2 at the level of the short-term repopulating stem cell 8-fold as assessed in the ΔCFU-S after 7 days in vitro culture (n=7, p & lt;0.001). In contrast, incubation with the p38 specific inhibitor SB 28049 did not show any decrease in Cdx2 activity in ΔCFU-S assay, indicating that the transforming potential of Cdx2 depends on the MEK1/2 pathway, but not on the p38 pathway. These data demonstrate that the leukemogenic potential of the homeobox gene Cdx2 depends on the N-terminal activation domain. Furthermore, our data link the oncogenic capacity of the transcription factor Cdx2 to MAPK signaling, opening the possibility to counteract homeobox-associated leukemogenesis by kinase inhibitors.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2006
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: The Journal of Experimental Medicine, Rockefeller University Press, Vol. 205, No. 3 ( 2008-03-17), p. 515-522
    Abstract: Canonical Wnt signaling is critically involved in normal hematopoietic development and the self-renewal process of hematopoietic stem cells (HSCs). Deregulation of this pathway has been linked to a large variety of cancers, including different subtypes of leukemia. Lef-1 is a major transcription factor of this pathway and plays a pivotal role in lymphoid differentiation as well as in granulopoiesis. Here, we demonstrate Lef-1 expression in murine HSCs as well as its expression in human leukemia. Mice transplanted with bone marrow retrovirally transduced to express Lef-1 or a constitutive active Lef-1 mutant showed a severe disturbance of normal hematopoietic differentiation and finally developed B lymphoblastic and acute myeloid leukemia (AML). Lef-1–induced AMLs were characterized by immunoglobulin (Ig) DH-JH rearrangements and a promiscuous expression of lymphoid and myeloid regulatory factors. Furthermore, single cell experiments and limiting dilution transplantation assays demonstrated that Lef-1–induced AML was propagated by a leukemic stem cell with lymphoid characteristics displaying Ig DH-JH rearrangements and a B220+ myeloid marker− immunophenotype. These data indicate a thus far unknown role of Lef-1 in the biology of acute leukemia, pointing to the necessity of balanced Lef-1 expression for an ordered hematopoietic development.
    Type of Medium: Online Resource
    ISSN: 1540-9538 , 0022-1007
    RVK:
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 2008
    detail.hit.zdb_id: 1477240-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: The Journal of Cell Biology, Rockefeller University Press, Vol. 180, No. 5 ( 2008-03-10), p. i16-i16
    Type of Medium: Online Resource
    ISSN: 0021-9525 , 1540-8140
    RVK:
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 2008
    detail.hit.zdb_id: 1421310-2
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 111, No. 1 ( 2008-01-01), p. 309-319
    Abstract: The mechanisms underlying deregulation of HOX gene expression in AML are poorly understood. The ParaHox gene CDX2 was shown to act as positive upstream regulator of several HOX genes. In this study, constitutive expression of Cdx2 caused perturbation of leukemogenic Hox genes such as Hoxa10 and Hoxb8 in murine hematopoietic progenitors. Deletion of the N-terminal domain of Cdx2 abrogated its ability to perturb Hox gene expression and to cause acute myeloid leukemia (AML) in mice. In contrast inactivation of the putative Pbx interacting site of Cdx2 did not change the leukemogenic potential of the gene. In an analysis of 115 patients with AML, expression levels of CDX2 were closely correlated with deregulated HOX gene expression. Patients with normal karyotype showed a 14-fold higher expression of CDX2 and deregulated HOX gene expression compared with patients with chromosomal translocations such as t(8:21) or t(15;17). All patients with AML with normal karyotype tested were negative for CDX1 and CDX4 expression. These data link the leukemogenic potential of Cdx2 to its ability to dysregulate Hox genes. They furthermore correlate the level of CDX2 expression with HOX gene expression in human AML and support a potential role of CDX2 in the development of human AML with aberrant Hox gene expression.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2008
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 106, No. 11 ( 2005-11-16), p. 644-644
    Abstract: Lef-1 is a nuclear protein of the Lef/Tcf family of transcription factors, known to be a key component of the Wnt/β-catenin signalling pathway. Lef-1 is crucially linked to normal B- and T-cell development. Furthermore, its aberrant expression has been associated with T-cell lymphoma and CLL. However, there are few data about the potential role of this transcription factor in normal hematopoietic stem cell and progenitor development. Aim of this project was to clarify the expression pattern of Lef-1 in early hematopoietic progenitor cells and to test whether constitutive expression of this transcription factor affects early hematopoietic development. Analysis of Lef-1 expression by semi-quantitative RT-PCR and Real Time PCR demonstrated Lef-1 expression in both lymphoid (B220+, CD4+, CD8+) and myeloid (Gr1+, Mac1+) subpopulations, but also in highly purified hematopoietic stem cells (Sca1+/Kit+/Lin−). In order to prove functional relevance of Lef-1 expression, constitutive expression of Lef-1 and of a constitutive active Lef-1 mutant (CA-Lef-1; with a Lef-1 activating β-catenin domain) was induced in primary murine bone marrow (BM) cells by retroviral gene transfer, using a MSCV based retroviral construct with an IRES-GFP cassette. At the level of clonogenic progenitor cells, both Lef-1 and CA-Lef-1 increased the colony forming potential of progenitors in vitro by more than 2-fold compared to the empty vector control (n=4, p & lt;0.03). At the level of the short-term repopulating stem cell, Lef-1 remarkably increased the size and the number of spleen colonies resulting in a 8fold increase in the CFU-S frequency compared to the control (median 120 CFU-S/1x105 versus 15 CFU-S/1x105 cells, respectively; p & lt; 0.001; Lef-1 n=5, control n=13). To assess the impact of Lef-1 on long-term repopulating stem cells mice were transplanted with BM cells transduced either with Lef-1 or CA-Lef-1. Both Lef-1 constructs severely perturbed normal hematopoietic development inducing a reduction of lymphoid cells with an inversion of the lymphoid/myeloid ratio (ratio 0.03 vs. 5.8 in the non-transduced compartment) and accumulation of neutrophils in the peripheral blood (97 % Gr1 positive cells versus 15 % in the non-transduced compartment) as well as in the spleen (lymphoid/myeloid ratio 0.2 vs. 6.9 and 87 % versus 12 % Gr1+ cells). 3 mice (1 Lef-1 and 2 CA-Lef-1 mice) succumbed to a lethal myeloproliferative syndrome, one mouse (Lef-1) developed acute leukemia, which was readily transplantable into secondary and tertiary recipients and showed indefinite IL-3 dependent cell growth in vitro. Taken together, these data show that ordered expression of Lef-1 plays a key role in early hematopoietic development and that deregulation of this transcription factor favors the development of myeloid malignancies.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2005
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 110, No. 11 ( 2007-11-16), p. 2125-2125
    Abstract: Deregulated homeobox gene expression characterizes more than 60% of all acute myeloid leukemia (AML) patients, particular in patients with normal karyotype (NK). So far it is largely unknown how the aberrant expression of homeobox genes is initiated in the malignant clone. The ParaHox gene Cdx2 was shown to act as positive upstream regulator of Hox genes in embryogenesis. We have previously shown that ectopic Cdx2, which normally is not expressed in hematopoietic cells, can be the key event in the development of AML in mice (Rawat et al., PNAS 2004). In our present study we now demonstrate that ectopic expression of Cdx2 in murine hematopoietic progenitors induced significant up-regulation of Hox genes with leukemogenic potential such as HoxA9, Hoxa10, HoxA5, Hoxa7, Hoxb6, Hoxb8. Deletion of the N-terminal transactivation domain of Cdx2 abrogated its ability to perturb Hox gene expression and eliminated its leukemogenic potential in vivo (n=13), whereas inactivation of the putative Pbx binding site of the protein did not prevent Cdx2 induced leukemogenesis. As we showed that Cdx2 upregulated leukemogenic Hox genes and caused AML in the murine model we analyzed 115 AML patients for a correlation between the expression levels of CDX2 and deregulated HOX gene expression. A total of 71 patients with normal karyotype (AML NPMc+ = 45 cases; NPMc– = 26 cases) was analyzed for CDX2 expression. 89% of the AML NPMc+ cases showed ectopic expression of CDX2 as well as 88% of the cases without the NPM1 mutation. We extended this analysis to 44 patients with abnormal karyotype and detected ectopic CDX2 expression in 64% (28 out of 44) of the cases: 12 of 24 patients with t(8;21), 10 of 10 patients with t(15;17). Importantly, when the expression level of CDX2 was compared between AML cases with normal and abnormal karyotype, there was 14fold higher expression level in the patient group with NK (n=63) compared to the group with aberrant karyotype (n=28) (ØΔCT 7.72 vs. ØΔCT 11.62, respectively; p & gt;0.001). By using oligonucleotide microarray analysis, we confirmed that high Cdx2 expressing AML-NK patients with (n=12) or without NPM1 mutation (n=12) were characterized by aberrant expression of multiple HOXA and B cluster genes such as HOXA10, HOXA9 and HOXB3, HOXB6 in contrast to AML cases expressing the PML-RARA or AML1-ETO fusion gene or normal healthy donors. Three NPMc- cases with normal karyotype showed the same low level of expression of CDX2 (ΔCT 10.55–11.55) as AML cases with aberrant karyotype. Of note, these three cases did not show any perturbation of HOX gene expression and thereby fell into the same cluster as AML cases with t(8;21) or t(15;17) in the microarray data set evaluating HOX gene expression in the different AML subtypes. All AML-NK patients tested were negative for CDX1 and CDX4 expression. These data link the leukemogenic potential of Cdx2 to its ability to dysregulate Hox genes. They furthermore correlate the level of CDX2 expression with HOX gene expression in human AML and support a potential role of CDX2 in the development of human AML with aberrant Hox gene expression.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2007
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Genomics Data, Elsevier BV, Vol. 6 ( 2015-12), p. 285-287
    Type of Medium: Online Resource
    ISSN: 2213-5960
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2015
    detail.hit.zdb_id: 2751131-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 112, No. 11 ( 2008-11-16), p. 1800-1800
    Abstract: We have demonstrated that the expression of the CALM/AF10 (C/A) fusion gene in murine BM cells results in an aggressive acute myeloid leukemia (AML). We sought to identify the domains involved in leukemogenesis mediated by the CALM/AF10 fusion gene. For this purpose we employed the CFU-S assay in which it was observed that C/A transduced BM cells generated an average of 75±23 day 12 CFU-S colonies per input 10^5 cells as compared to an average of 2 ±3 colonies with cells expressing the empty GFP vector (~ 37 fold increase; P & lt; 0.0005) in the number of day-12 CFU-S content. Expression of the CALM gene truncated to the breakpoint of CALM/AF10 (CALMdelta3’) or the CALM/ AF10 fusion gene with a deleted octapeptide motif - leucine zipper domain (CALM/AF10 delta OM-LZ) gave 10 (±11) and 12 (±11) day12 CFU-S respectively per input 10^5 bone marrow cells showing that the AF10 portion of C/A, especially the OM-LZ region is necessary for the observed enhancement of d-12 CFU-S. BM cells transduced with a construct harboring the CALM gene fused only to the OM-LZ domain of AF10 (CALM+ OM-LZ) showed 68(±5) d-12 CFUS per input 10^5 cells (~34 fold Vs MIG; P=0.0006) comparable to the C/A fusion gene. We observed that the C/A fusion gene fails to show leukemic transformation of BM progenitors in CFC or proliferation assays in vitro in contrast to its striking leukemogenic potential in vivo. We tested different mutants of the C/A fusion gene using these assays and observed that the expression of a mutant of the CALM/AF10 fusion gene with a C-terminal portion of CALM (amino acids 400 – 648) fused to the OM-LZ motif of AF10, showed a significant increase in the number of secondary CFCs (32 fold Vs MIG; 15.38 fold Vs C/A), with the appearance of predominantly blast-like colonies. Interestingly, this mutant could also initiate leukemias in mice (n=5) with a latency and phenotype similar to mice injected with C/A transduced BM cells. Taken together, we demonstrate that the OM-LZ domain of AF10 is necessary for the expansion of early hematopoietic progenitors by CALM/AF10 and also sufficient for in vivo leukemic transformation. We also demonstrate that the deletion of amino acids 1 to 410 of CALM confers in vitro transformation potential to the C/A fusion gene. Our data identify the domains of C/A that are crucial for leukemogenesis and provide insights into the mechanism of transformation in t(10;11) (p13;q14) positive leukemia.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2008
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 106, No. 11 ( 2005-11-16), p. 799-799
    Abstract: Adult hematopoietic stem cells can be identified by the ability to rapidly efflux the Hoechst 33342 dye and consequently produce a characteristic side population (SP) phenotype. ABCG2 (Human Breast Cancer Resistance Protein, BCRP) is the molecular determinant of the SP phenotype. We have demonstrated previously that the SP phenotype together with the expression of CD34 and lack of CD38 distinguishes between normal and leukemic stem cells in patients with acute myeloid leukemia (AML), suggesting a role of this protein in early human hematopoiesis. To test this, normal highly purified human CD34+ cord blood cells were transduced retrovirally by ABCG2/YFP and analyzed for their in vitro and in vivo behaviour. In vitro constitutive expression of ABCG2 doubled the number of the most immature CFU-GEMM type colonies in the CFC assays (n=12; p & lt; 0.002). Furthermore, the protein enhanced the replating capacity of primary colonies with a mean 3.0 fold increase in the number of 2nd colonies (n=9; p & lt; 0.01), indicating a substantial enhancement of the proliferative potential of clonogenic progenitors by constitutive ABCG2 expression. In contrast, ABCG2 did not induce any major increase in the frequency of LTC-IC compared to the YFP control after 5 days as assessed by limiting dilution LTC-IC (1 LTC-IC per 3911 cells and 1 LTC-IC per 3641 cells, respectively). To study the impact of ABCG2 on human progenitor cells in vivo NOD/SCID mice were injected with highly purified ABCG2/YFP+ cells and analyzed 8 weeks after transplantation for human engraftment. Although mice in the ABCG2 group received less transduced cells than the control (on average 1.2 x 105 versus 3.7 x 105 per mouse, respectively), they showed significant higher engraftment compared to the control group (6.1 x 107 transduced cells (4.3–8.2) versus 4.2 x 107 (3.2–5.7) per mouse, respectively; p & lt;0.04). Mice that received ABCG2-transduced cells showed a 4.6fold increase in the number of engrafted CD34+ progenitor cells (1.4x 107 CD34+CD45+ vs 6.5x 106; p & lt;0.05). In addition, ABCG2 expression resulted in 2.2-fold increase of c-KIT+ cells (6.1x106 cells vs. 2.8 x 106 cells in the control arm; p & lt; 0.02) indicating that the constitutive expression of ABCG2 enhanced the number of human primitive progenitor cells. ABCG2 expression was also associated with an expansion in the CD15+ /CD33+ human myeloid compartment: in the control mice 1.1 x 107 human transduced myeloid cells (CD15+) were detected per mouse compared to 2.6 x 107 in the ABCG2 group 8 weeks post transplant (p & lt;0.05) whereas the human CD19+ lymphoid compartment was not changed. This resulted in an inversion of the ratio of engrafted CD19+/CD15+ human lymphoid/myeloid cells (mean of 0.5 for ABCG2 vs 1.1 in the control; p & lt;0.03). Furthermore, constitutive expression of ABCG2 promoted erythroid differentiation with a 3.6fold increase in glycophorin A expressing erythroid cells (9 x 106 vs 2.5 x 106 GlyA+ cells in the control; p & lt; 0.003). Taken together, our data characterize ABCG2 as a previously unrecognized potent positive regulator of primitive hematopoietic cell growth in vitro and in vivo and extend our so far limited knowledge about human stem cell regulation by this ABC transporter.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2005
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 110, No. 11 ( 2007-11-16), p. 2645-2645
    Abstract: Canonical Wnt signaling is critically involved in normal hematopoietic development and the self-renewal process of hematopoietic stem cells. Deregulation of this pathway has been linked to a large variety of cancers including leukemia. Lef-1, a key factor of the Wnt / beta-catenin signaling pathway, plays pivotal roles in lymphoid development, but little is known about the role of Lef-1 in myeloid hematopoiesis and leukemogenesis. We now show that Lef-1 is expressed in murine hematopoietic stem cells (‘LSK’, Sca+cKit+Lin−) and both myeloid and lymphoid subpopulations as well as in different human leukemias. Using a retroviral BM transplantation model, we demonstrate that ectopic expression of wild type Lef-1 (WT) and a constitutive active mutant of Lef-1 (CA) induces a severe disturbance of normal hematopoietic development: mice transplanted with bone marrow constitutively expressing Lef-1 had a significant increase in the number of circulating myeloid cells resulting in an inverted lymphoid-myeloid ratio in the peripheral blood (ratio: 0.28 (WT), 0.10 (CA) vs. 1.07 (GFP); p & lt;0.002). With a median latency of 12 month, transplanted mice succumbed to a lethal myeloproliferation (n=2) or acute myeloid or B-lymphoblastic leukemias (N=8). Both leukemia subtypes shared key biological characteristics such as positivity for IG DH-JH rearrangements. In addition, both subtypes were characterized by a biphenotypic cell population (B220+Mac1+Gr1+, BMG+++) as well as varying numbers of B220+Mac1−Gr1− (B+MG−) cells. In both leukemia subtypes single DJH–rearranged B+MG− cells had the highest seeding efficiency and were able to give rise to both BMG+++ and B−MG+ cells in vitro (mean seeding efficiency: B+MG−: 17.9%, vs. BMG+++: 4.7%, B−MG+: 4.0, p=0.005). Strikingly, the frequency of leukemia-initiating cells in AML was highest in the B+MG− population as determined by limit dilution transplantation assays (B+MG−: 1 in 433 vs. BMG+++/B−MG+: 1 in 8491 cells, p & lt;0.001). Expression analysis of malignant blast cells from both lymphoid and myeloid leukemias also revealed striking commonalities with regard to the transcription profile. Blast cells from both AML and ALL diseased mice uniformly showed expression of myelo-specific genes like C/ebpα and c-fms and lymphoid specific genes E2A and Ebf-1, but lacked expression of the B-cell differentiation regulator Pax-5. These findings demonstrate that balanced expression of Lef-1 is crucial for early normal hematopoietic differentiation and that deregulation of this factor induces the development of DJH-rearranged acute myeloid and lymphoid leukemias which are propagated by a leukemic stem cell with lymphoid characteristics.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2007
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages