In:
Journal of High Energy Physics, Springer Science and Business Media LLC, Vol. 2024, No. 10 ( 2024-10-04)
Abstract:
We present a study of $$ {\Xi}_c^0\to {\Xi}^0{\pi}^0 $$ Ξ c 0 → Ξ 0 π 0 , $$ {\Xi}_c^0\to {\Xi}^0\eta $$ Ξ c 0 → Ξ 0 η , and $$ {\Xi}_c^0\to {\Xi}^0{\eta}^{\prime } $$ Ξ c 0 → Ξ 0 η ′ decays using the Belle and Belle II data samples, which have integrated luminosities of 980 fb − 1 and 426 fb − 1 , respectively. We measure the following relative branching fractions $$ {\displaystyle \begin{array}{c}\mathcal{B}\left({\Xi}_c^0\to {\Xi}^0{\pi}^0\right)/\mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right)=0.48\pm 0.02\left(\textrm{stat}\right)\pm 0.03\left(\textrm{syst}\right),\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Xi}^0\eta \right)/\mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right)=0.11\pm 0.01\left(\textrm{stat}\right)\pm 0.01\left(\textrm{syst}\right),\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Xi}^0{\eta}^{\prime}\right)/\mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right)=0.08\pm 0.02\left(\textrm{stat}\right)\pm 0.01\left(\textrm{syst}\right)\end{array}} $$ B Ξ c 0 → Ξ 0 π 0 / B Ξ c 0 → Ξ − π + = 0.48 ± 0.02 stat ± 0.03 syst , B Ξ c 0 → Ξ 0 η / B Ξ c 0 → Ξ − π + = 0.11 ± 0.01 stat ± 0.01 syst , B Ξ c 0 → Ξ 0 η ′ / B Ξ c 0 → Ξ − π + = 0.08 ± 0.02 stat ± 0.01 syst for the first time, where the uncertainties are statistical (stat) and systematic (syst). By multiplying by the branching fraction of the normalization mode, $$ \mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right) $$ B Ξ c 0 → Ξ − π + , we obtain the following absolute branching fraction results $$ {\displaystyle \begin{array}{c}\mathcal{B}\left({\Xi}_c^0\to {\Xi}^0{\pi}^0\right)=\left(6.9\pm 0.3\left(\textrm{stat}\right)\pm 0.5\left(\textrm{syst}\right)\pm 1.3\left(\operatorname{norm}\right)\right)\times {10}^{-3},\\ {}\mathcal{B}\left({\Xi}_c^0\to {\Xi}^0\eta \right)=\left(1.6\pm 0.2\left(\textrm{stat}\right)\pm 0.2\left(\textrm{syst}\right)\pm 0.3\left(\operatorname{norm}\right)\right)\times {10}^{-3},\\ {}\mathcal{B}\left({\varXi}_c^0\to {\Xi}^0{\eta}^{\prime}\right)=\left(1.2\pm 0.3\left(\textrm{stat}\right)\pm 0.1\left(\textrm{syst}\right)\pm 0.2\left(\operatorname{norm}\right)\right)\times {10}^{-3},\end{array}} $$ B Ξ c 0 → Ξ 0 π 0 = 6.9 ± 0.3 stat ± 0.5 syst ± 1.3 norm × 10 − 3 , B Ξ c 0 → Ξ 0 η = 1.6 ± 0.2 stat ± 0.2 syst ± 0.3 norm × 10 − 3 , B Ξ c 0 → Ξ 0 η ′ = 1.2 ± 0.3 stat ± 0.1 syst ± 0.2 norm × 10 − 3 , where the third uncertainties are from $$ \mathcal{B}\left({\Xi}_c^0\to {\Xi}^{-}{\pi}^{+}\right) $$ B Ξ c 0 → Ξ − π + . The asymmetry parameter for $$ {\Xi}_c^0\to {\Xi}^0{\pi}^0 $$ Ξ c 0 → Ξ 0 π 0 is measured to be $$ \alpha \left({\Xi}_c^0\to {\Xi}^0{\pi}^0\right)=-0.90\pm 0.15\left(\textrm{stat}\right)\pm 0.23\left(\textrm{syst}\right) $$ α Ξ c 0 → Ξ 0 π 0 = − 0.90 ± 0.15 stat ± 0.23 syst .
Type of Medium:
Online Resource
ISSN:
1029-8479
DOI:
10.1007/JHEP10(2024)045
Language:
English
Publisher:
Springer Science and Business Media LLC
Publication Date:
2024
detail.hit.zdb_id:
2027350-2
Bookmarklink