feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: The Astrophysical Journal Letters, American Astronomical Society, Vol. 946, No. 1 ( 2023-03-01), p. L23-
    Abstract: GRB 221009A ( z = 0.151) is one of the closest known long γ -ray bursts (GRBs). Its extreme brightness across all electromagnetic wavelengths provides an unprecedented opportunity to study a member of this still-mysterious class of transients in exquisite detail. We present multiwavelength observations of this extraordinary event, spanning 15 orders of magnitude in photon energy from radio to γ -rays. We find that the data can be partially explained by a forward shock (FS) from a highly collimated relativistic jet interacting with a low-density, wind-like medium. Under this model, the jet’s beaming-corrected kinetic energy ( E K ∼ 4 × 10 50 erg) is typical for the GRB population. The radio and millimeter data provide strong limiting constraints on the FS model, but require the presence of an additional emission component. From equipartition arguments, we find that the radio emission is likely produced by a small amount of mass (≲6 × 10 −7 M ⊙ ) moving relativistically (Γ ≳ 9) with a large kinetic energy (≳10 49 erg). However, the temporal evolution of this component does not follow prescriptions for synchrotron radiation from a single power-law distribution of electrons (e.g., in a reverse shock or two-component jet), or a thermal-electron population, perhaps suggesting that one of the standard assumptions of afterglow theory is violated. GRB 221009A will likely remain detectable with radio telescopes for years to come, providing a valuable opportunity to track the full lifecycle of a powerful relativistic jet.
    Type of Medium: Online Resource
    ISSN: 2041-8205 , 2041-8213
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2023
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 2006858-X
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2020
    In:  Monthly Notices of the Royal Astronomical Society Vol. 495, No. 3 ( 2020-07-01), p. 2979-2993
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 495, No. 3 ( 2020-07-01), p. 2979-2993
    Abstract: Late activity of the central engine is often invoked in order to explain the flares observed in the early X-ray afterglow of gamma-ray bursts, either in the form of an active neutron star remnant or (fall-back) accretion on to a black hole. However, these scenarios are not always plausible, in particular when flares are delayed to very late times after the burst. Recently, a new scenario was proposed that suggests X-ray flares can be the result of the passing of a long-lived reverse shock through a stratified ejecta, with the advantage that it does not require late-time engine activity. In this work, we numerically demonstrate this scenario to be physically plausible, by performing one-dimensional simulations of ejecta dynamics and emission using our novel moving-mesh relativistic hydrodynamics code. Improved efficiency and precision over previous work enables the exploration of a broader range of set-ups. We can introduce a more physically realistic description of the circumburst medium mass density. We can also locally trace the cooling of electrons when computing the broad-band emission from these set-ups. We show that the synchrotron cooling time-scale can dominate the flare decay time if the stratification in the ejecta is constrained to a localized angular region inside the jet, with size corresponding to the relativistic causal connection angle, and that it corresponds to values reported in observations. We demonstrate that this scenario can produce a large range of observed flare times, suggesting a connection between flares and initial ejection dynamics rather than with late-time remnant activity.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  Monthly Notices of the Royal Astronomical Society Vol. 510, No. 1 ( 2021-12-24), p. 1315-1330
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 510, No. 1 ( 2021-12-24), p. 1315-1330
    Abstract: In recent years, dynamical relativistic jet simulation techniques have progressed to a point where it is becoming possible to fully numerically resolve gamma-ray burst (GRB) blast-wave evolution across scales. However, the modelling of emission is currently lagging behind and limits our efforts to fully interpret the physics of GRBs. In this work we combine recent developments in moving-mesh relativistic dynamics with a local treatment of non-thermal emission in a new code: gamma. The code involves an arbitrary Lagrangian–Eulerian approach only in the dominant direction of fluid motion that avoids mesh entanglement and associated computational costs. Shock detection, particle injection, and local calculation of their evolution including radiative cooling are done at runtime. Even though gamma has been designed with GRB physics applications in mind, it is modular such that new solvers and geometries can be implemented easily with a wide range of potential applications. In this paper, we demonstrate the validity of our approach and compute accurate broad-band GRB afterglow radiation from early to late times. Our results show that the spectral cooling break shifts by a factor of ∼40 compared to existing methods. Its temporal behaviour also significantly changes from the previously calculated temporary steep increase after the jet break. Instead, we find that the cooling break does not shift with time between the relativistic and Newtonian asymptotes when computed from our local algorithm. gamma is publicly available at: https://github.com/eliotayache/gamma.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages