feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 4361-4361
    Abstract: Post-translational modifications are important fine-tuning elements for controlling protein activity and signaling. Regulation of phosphorylation events of the BCR is critical for survival and proliferation of CLL cells. Palmitoylation, a common post-translational modification defined as the addition of palmitic acid to internal cysteins, was shown recently to regulate phosphorylation of proteins by controlling their localization and activity. Many proteins in the B cell receptor (BCR) signaling pathway in CLL cells are primarily cytosolic, but upon activation transiently located to the plasma membrane to fulfill their functions. Some of these proteins, like Src kinase family members Lyn, Yes and Fyn, are already reported to be palmitoylated. Previous studies by our group showed that global protein palmitoylation is deregulated in CLL cells and primarily caused by overexpression of the depalmitoylating enzyme APT1. To investigate, if overexpressed APT1 directly targets BCR signaling, we inhibited (genetically and pharmacologically) APT1 in CLL cells and analyzed occurring changes in 45 different phosphorylation-sites of major signaling pathways. Interestingly, we found that APT1 controls the central phosphorylation events within Akt/mTOR/p70S6 signaling. For example, phosphorylation of Akt (T308, S473) and p70S6 (T389, T421, S424) was significantly decreased after interference with protein depalmitoylation. By biochemical dissection of these pathways with acyl-biotin exchange (ABE) assays we identified novel palmitoylation candidates particularly within the PI3K/Akt axis, which are indispensable for phosphorylation of kinases of the Akt/mTOR/p70S6 axis. Functionally, pharmacological inhibition of APTs and genetic knockdown of APT1 sensitizes CLL cells towards BCR-associated KIs like Ibrutinib and Idelalisib. Our data uncovers that central phosphorylation events within the BCR pathway are dependent on palmitoylation controlled by APT1. Future studies should therefore investigate more in detail how addition of APT1 inhibitors can improve clinical outcome of patients treated with Idelalisib or Ibrutinib-based regimens. Disclosures Wendtner: Hoffmann-La Roche, Mundipharma, Janssen, Gilead, Abbvie, Servier, Morphosys: Consultancy, Other: Travle grants, Research Funding. Hallek:Janssen-Cilag: Consultancy, Honoraria, Other: travel support, Research Funding, Speakers Bureau; AbbVie: Consultancy, Honoraria, Other: travel support, Research Funding, Speakers Bureau; Gilead: Consultancy, Honoraria, Other: travel support, Research Funding, Speakers Bureau; Mundipharma: Consultancy, Honoraria, Other: travel support, Research Funding, Speakers Bureau; Amgen: Consultancy, Honoraria, Other: travel support, Research Funding, Speakers Bureau; Celgene: Consultancy, Honoraria, Other: travel support, Research Funding, Speakers Bureau; F. Hoffmann-LaRoche: Consultancy, Honoraria, Other: travel support, Research Funding, Speakers Bureau.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 3918-3918
    Abstract: Abstract 3918 Background: CLL cells circulating in the peripheral blood are sensitive to therapy while malignant cells residing in the microenvironment survive and are the source of relapse. One of the strongest microenvironmental stimuli is CD40 ligand (CD40L)-CD40 interaction, which induces proliferative/anti-apoptotic genes in CLL cells, protecting them from apoptosis and many cytotoxic drugs. Despite the evident importance of CD40 activation further stimuli have to be considered, especially hypoxia. Lymph nodes, particularly those being infiltrated by malignant cells, show a low oxygen tension ( 〈 1%). Prior CLL investigations never took this important factor into account, hence the impact of hypoxia on cell survival and drug-resistance is still unrevealed. Methods: We have established an in vitro model, which mimics hypoxic conditions and CD40L-CD40 interaction, in order to understand the molecular basis of drug resistance of CLL cells resident in the microenvironment. CLL cells were cultured on CD40L feeder cells and kept up to 96 hours in hypoxia (1% O2) or normoxia (21% O2). We determined how proliferation rates in CLL are affected by these conditions and subsequently applied several drugs to investigate differences in drug efficacy between normoxia and hypoxia. Apoptosis was determined by AnnexinV/7AAD-staining and subsequent flow cytometry. Expression of potential target molecules was determined by qRT-PCR and Western Blotting. Results: Hypoxia is known to protect malignant cells in solid cancers from chemotherapy. We made similar observations, since classical DNA-targeting drugs were inefficient to kill CLL cells under hypoxic conditions. However, we identified ABT-737, which affects mitochondrial integrity, to be even more efficient under hypoxic conditions compared to normoxia. In order to explain this discrepancy we investigated the expression of several mitochondrial localized anti-/proapoptotic genes on RNA and protein level. We show that the de-regulation of BclXL and Mcl-1 under hypoxic conditions is essential for ABT-737 sensitivity. BclXL deregulation depends on a general reduction in protein translation in hypoxic cells. Mcl-1 protein expression differs from its mRNA expression, hence we expected regulation subsequent to protein synthesis. Indeed we could identify an increased activity of the proteasome in hypoxia, as Mcl-1 is a short-lived protein with a rapid proteasomal turnover this is a feasible explanation for the observed downregulation. Interestingly, hypoxia has a great impact on proliferation of primary CLL cells under different stimuli in vitro. Conclusion: These are the first experiments investigating the impact of oxygen tension on survival and response to chemotherapy of CLL cells. We show that hypoxia renders CLL cells resistant to classical DNA-targeting agent Fludarabine and Bendamustine. Furthermore we point out that small molecules like ABT-737, which specifically target mitochondria, might be efficient in targeting CLL cells protected by hypoxia and CD40L-CD40 interaction within the microenvironment. Development of novel in vitro models like ours will help us understand the specific molecular changes induced by microenvironmental stimuli and their impact on drug efficacy. These findings will allow us to identify novel therapeutic targets. M.Hu. and L.P.F. contributed equally to this work Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 354-354
    Abstract: Background: The immunoglobulin-like protein TOSO, which has been found to serve as Fc receptor for IgM (FcµR), was shown by us and others to be overexpressed on CLL cells and only weakly expressed on more aggressive B-NHL. However the functional role of TOSO on lymphomagenesis has not been explored so far. Methods: To determine the role of TOSO on lymphoma development, we took advantage of the Eµ-TCL1 transgenic mice, which usually end up with an aggressive (IgVH unmutated) CLL-like phenotype. We generated a novel B cell-specific conditional knockout (KO) mouse model in which EµTCL1 mice (TC or control in the following) were crossbred with TOSO-floxed mice, expressing Cre recombinase under the control of the CD19 promoter (EµTCL1;Tosofl/fl;Cd19cre/wtor TCT in the following). TCT mice were further compared with p53 conditional knockout (EµTCL1;Tp53fl/fl;Cd19cre/wt or TCP). Results: In this study, we compared kinetics, overall survival and phenotype of lymphoma/CLL in TC, TCT and TCP mice. Interestingly, TCTmice developed a very aggressive phenotype and resulted in significantly shorter overall survival compared to TC mice (TCT 274 days vs. TC 346 days; p 〈 0.0001). As expected, mice lacking p53 (TCP) died even more rapidly than TCT mice (median survival: TCP 233 days). Initially, all three genotypes (TC, TCT, TCP) developed a CLL phenotype, exhibiting a CD19 and CD5 positive malignant clone. In the TCT mice, shorter overall survival is accompanied by a stronger increase of blood leukocytes. Flow cytometry analysis confirmed a strong increase of leukemic CD19/CD5-positive B cells in the blood of TCT mice. With only 20 weeks of age, leukemic cells already made up 37.5 % (SD ± 15.47; n=14) of lymphocytes (TC: 14.3 % SD ± 9.81; n=31). At the age of 36 weeks, TCT mice showed even a 3.6-fold elevated malignant cell count compared to control mice (n=35 TC, n=14 TCT; p=0.006). All TCT mice developed a splenomegaly, with spleen weight (p=0.01) and size (p=0.018) significantly increased in 36 week old TCT mice (n=7) compared to TC mice (n=7) and comparable to those from TCP mice. Interestingly, between week 28 and 36, we could observe that most of the TCT mice start losing CD19+ cells in the blood in contrast to TC and TCP mice. Immunohistochemistry revealed the expansion of malignant cells with pleomorphic nuclei and abundant cytoplasm in the spleen and bone marrow, as we know it from Richter`s transformation. To understand the rapid development of leukemia in TCT mice, we first determined the role of the BCR in this model. Interestingly, flow cytometry revealed a higher surface IgM expression (MFI: TCT 9,27; TC 2,05). In addition, in vitro assays revealed a significantly higher resistance of TCT cells towards PI3K inhibition (Idelalisib and Duvelisib) compared to TC cells. To further rule out the role of TOSO under "germinal-center conditions", we stimulated primary human CLL cells with CD40L expressing feeder cells and IL-4. Interestingly, both stimuli (either alone or in combination) resulted in almost complete loss of TOSO on CLL cells. Moreover, we uncovered, that the TOSO promoter is counteractively regulated by NF-κB and BCL6. Furthermore, our data illustrate that DNA hypomethylation of the TOSO promoter is a discriminating characteristic in CLL patients compared to healthy donors, thus explaining the significantly enhanced expression levels. Thus, both, epigenetic regulation and altered NF-κB/ BCL6 expression are critical pathogenetic steps in the development of CLL and aggressive B-NHL by regulating TOSO expression. Conclusion: The transformation of CLL into more aggressive malignancies is still not fully understood. Our data reveal that the loss of TOSO might play a major role in Richter's transformation by upregulation of the BCR and by mimicking the germinal-center phenotype. Disclosures Fingerle-Rowson: Roche: Employment. Wendtner:Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Genentech: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Mundipharma: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Hoffmann-La Roche: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; AbbVie: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Gilead: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Servier: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding; Morphosys: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding. Hallek:GSK: Research Funding; Mundipharma: Research Funding; Janssen: Research Funding; Celgene: Research Funding; Gilead: Research Funding; AbbVie: Consultancy, Honoraria, Research Funding; Roche: Consultancy, Honoraria, Research Funding; Genentech: Consultancy, Honoraria.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 130, No. 14 ( 2017-10-05), p. 1628-1638
    Abstract: HDAC6 inhibition represents a novel strategy to improve the efficacy of anti-CD20 mAbs. HDAC6 inhibition increases CD20 levels by enhancing CD20 protein synthesis without affecting the gene expression.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2017
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Frontiers Media SA ; 2012
    In:  Frontiers in Plant Science Vol. 3 ( 2012)
    In: Frontiers in Plant Science, Frontiers Media SA, Vol. 3 ( 2012)
    Type of Medium: Online Resource
    ISSN: 1664-462X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2012
    detail.hit.zdb_id: 2687947-5
    detail.hit.zdb_id: 2613694-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages