Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nature Genetics, Springer Science and Business Media LLC, Vol. 54, No. 8 ( 2022-08), p. 1178-1191
    Type of Medium: Online Resource
    ISSN: 1061-4036 , 1546-1718
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 1494946-5
    SSG: 12
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Nature Cancer, Springer Science and Business Media LLC, Vol. 3, No. 6 ( 2022-06-20), p. 710-722
    Type of Medium: Online Resource
    ISSN: 2662-1347
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 3005299-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 2513-2513
    Abstract: Pancreatic ductal adenocarcinoma (PDAC) features abundant perineural invasion (PNI). Intra-tumoral nerves play critical roles in cancer initiation, progression, recurrence, treatment-resistance, metastasis, and mortality for many malignancies but the diverse molecular mechanisms underlying tumor-nerve crosstalk remain largely unknown—hindering the development of therapies targeting this key pathological process. To address this gap, we performed whole transcriptome digital spatial profiling on twelve custom tissue microarrays (n=288 cores) derived from intratumorally-matched regions with and without PNI in primary PDAC specimens (n=31 patients) and independently measured gene expression from cancer cells, fibroblasts, and nerves. We undertook a differential gene expression analysis comparing malignant cells in PNI-present and -absent regions. We quantified the growth kinetics of dorsal root ganglia (DRG) sensory neurons cultured with exogenous candidate proteins, which validated that some candidates augment (e.g., Lgals1) and others inhibit (e.g., Sema3b) neurite outgrowth. Next, we mapped our previously discovered malignant cell programs onto the epithelial segments and observed a significant enrichment of the mesenchymal, basal-like, and neural-like progenitor (NRP) programs versus depletion of the classical program in PNI-present regions. To determine the effects of malignant subtype on nerve outgrowth, we engineered isogenic KrasG12D/+;Trp53FL/FL;Rosa26-dCas9-VPR (KP;dCas9-VPR) organoids to overexpress the master transcription factors (TFs) for each malignant subtype (e.g., Gata6 for classical, Glis3 for NRP). We then performed the DRG neuronal outgrowth assay using conditioned media from each subtype-specific organoid line versus an off-target control and observed that the classical line suppressed neurite outgrowth, the mesenchymal and basal-like lines were neutral, and the NRP line enhanced neurite outgrowth dynamics comparable to the Ngf positive control. Taken together, our findings suggest that the mechanisms underlying nerve recruitment/outgrowth and perineural invasion may be partly decoupled. To further test this hypothesis, we are performing transwell invasion assays comparing KP;dCas9-VPR cancer cell lines that overexpress each of the candidate PNI-associated genes and malignant subtype TFs. We anticipate that this study will transform our understanding of how cancer cells and the peripheral nervous system collaborate and guide prioritization for therapeutic intervention in the burgeoning cancer neuroscience field. Citation Format: William L. Hwang, Jennifer Su, Carina Shiau, Peter L. Wang, Jimmy A. Guo, Nicole A. Lester, Jaimie L. Barth, Hannah I. Hoffman, Prajan Divakar, Jason W. Reeves, Eric Miller, Joseph M. Beechem, Andrew J. Aguirre, Lei Zheng, David T. Ting, Mari Mino-Kenudson, Tyler Jacks. Distinct cancer-intrinsic mechanisms mediate nerve recruitment/outgrowth versus perineural invasion [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 2513.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 22_Supplement ( 2022-11-15), p. C052-C052
    Abstract: Intratumoral nerves play important and versatile roles in cancer initiation, progression, recurrence, treatment-resistance, metastasis, morbidity, and mortality for many malignancies but the diverse molecular mechanisms underlying tumor-nerve crosstalk remain largely unknown. One of the differentiating hallmarks of pancreatic ductal adenocarcinoma (PDAC) is an exceptionally high frequency of perineural invasion (PNI), a histopathologic manifestation of tumor-nerve crosstalk whereby cancer cells recruit, migrate towards, and envelop or invade peripheral nerves. Evidence for some neurochemicals/neurotrophins involved in PNI have been uncovered, but most of the underlying work was limited by a lack of cell-type specificity, spatial context, and fragmented focus on individual pathways. To address these shortcomings, we set out to comprehensively identify cell-type specific genes spatially linked to PNI in patient tumors and then dissect the functional roles of these genes through live imaging of dorsal root ganglia (DRG) sensory neurons incubated in conditioned media from cancer cell organoids overexpressing candidate genes via CRISPR activation (CRISPRa). First, we performed whole transcriptome digital spatial profiling (NanoString GeoMx) on twelve custom tissue microarrays (n=288 cores) derived from intratumorally-matched malignant regions with and without PNI in primary resected PDAC specimens (n=31 patients). Differential gene expression (DE) analysis (FDR & lt; 0.001) for PNI demonstrated that for malignant cells there were 271 enriched and 65 depleted genes, and for fibroblasts there were 16 enriched and 27 depleted genes. We further evaluated associations between PNI and expression of malignant subtypes previously identified from single-nucleus RNA-seq applied to 43 primary resected PDAC specimens. We found that malignant cells engaged in PNI were enriched in the mesenchymal, basaloid and neural-like progenitor (NRP) subtypes and depleted in the classical subtype. To test these associations functionally, we generated isogenic murine organoid lines (KrasG12D/+;Trp53FL/FL;R26-dCas9-VPR) overexpressing subtype-driving transcription factors and collected conditioned media. DRG sensory neurons demonstrate enhanced and suppressed growth kinetics when grown in NRP and classical conditioned media, respectively; mesenchymal and basal-like conditioned media do not appear to influence growth kinetics. These results suggest that while mesenchymal, basaloid, and NRP cells likely all play a role in cancer cell invasion of nerves, NRP cells may have an additional role in tumor-nerve tropism. Additional experiments exploring the functional effects of the top enriched and depleted genes from the DE analysis are ongoing. We anticipate that this study will provide a high-resolution understanding of critical intercellular interactions in the PDAC tumor microenvironment that facilitate PNI and tumor-nerve crosstalk more broadly to guide novel therapeutic strategies. Citation Format: William L. Hwang, Jennifer Su, Jimmy A. Guo, Carina Shiau, Jaimie L. Barth, Hannah I. Hoffman, Prajan Divakar, Jason W. Reeves, Eric Miller, Grissel Cervantes-Jaramillo, William Freed-Pastor, Vanessa Funes, Jennifer Y. Wo, Theodore S. Hong, Carlos Fernandez-del Castillo, Lei Zheng, Andrew J. Aguirre, David T. Ting, Mari Mino-Kenudson, Tyler Jacks. Identifying mediators of perineural invasion in pancreatic cancer using spatial transcriptomics [abstract]. In: Proceedings of the AACR Special Conference on Pancreatic Cancer; 2022 Sep 13-16; Boston, MA. Philadelphia (PA): AACR; Cancer Res 2022;82(22 Suppl):Abstract nr C052.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 771-771
    Abstract: Detection of multiple primary lung cancers is increasing in frequency, with up to 15% of all non-small cell lung cancer (NSCLC) patients presenting with two or more anatomically separate tumor nodules on CT scans. Increased detection is in part due to expanded lung cancer screening criteria in an aging population. Distinguishing multiple primary tumors from intrapulmonary metastases can be challenging, yet is critical for determining clinical management. Current models predict development of multiple primary tumors out of a cancerized field, such as occurs due to smoking. The occurrence of multiple primary tumors is unexplained in patients with EGFR-mutant lung cancer (~15% of all NSCLC), lacking environmental exposures. We identified patients with non-small cell lung cancer (NSCLC) who presented with multiple primary EGFR-mutant tumors, in the absence of family history of lung cancer or heavy smoking. We subjected the macrodissected tumors and surrounding normal tissues to whole exome sequencing as well as to analysis of hypermutable poly-guanine (poly-G) repeats, which are two orthogonal methods of lineage tracing. An additional familial case with a germline EGFR-T790M mutation was used to establish parameters for timing of somatic mutations, and functional properties of novel germline variants were modeled in vitro. Of eleven non-familial NSCLC cases with two or more geographically distinct EGFR-mutant lung cancers, two patients harbored a germline EGFR variant allele, which confers moderately enhanced signaling in vitro, followed by a somatically acquired EGFR mutation. In an additional four cases, both whole exome sequencing and poly-G repeat analyses indicate a distant shared somatic cell-of-origin, consistent with embryonic mosaicism. Three cases revealed clinically unappreciated metastasis and two cases remain unexplained. Together, our data suggest that multiple primary lung cancers with somatic EGFR driver mutations may result from genetic susceptibility, attributable either to attenuated EGFR germline variants or to embryonic mosaicism resulting in geographically disparate patches of predisposed lung tissue. Such predisposed cases should be surveilled for early detection of future tumors, and surgical resection in these cases should consider the life-long risk of additional cancers. Citation Format: Risa Burr, Ignaty Leshchiner, Christina L. Costantino, Martin Blohmer, Tilak Sundaresan, Justin Cha, Karsen Seeger, Sara Guay, Brian P. Danysh, Ira Gore, Raquel A. Jacobs, Kara Slowik, Filippo Utro, Kahn Rhrissorrakrai, Chaya Levovitz, Jaimie L. Barth, Taronish Dubash, Brian Chirn, Laxmi Parida, Lecia V. Sequist, Mari Mino-Kenudson, Kamila Naxerova, Shyamala Maheswaran, Gad Getz, Daniel A. Haber. Mechanisms of genetic predisposition to multifocal lung cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 771.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    In: Histopathology, Wiley
    Abstract: Small cell lung carcinoma (SCLC) can be classified into transcription factor‐based subtypes (ASCL1, NeuroD1, POU2F3). While in‐vitro studies suggest intratumoral heterogeneity in the expression of these markers, how SCLC subtypes vary over time and among locations in patients remains unclear. Methods and results We searched a consecutive series of patients at our institution in 2006–22 for those with greater than one available formalin‐fixed paraffin‐embedded SCLC sample in multiple sites and/or time‐points. Immunohistochemistry for ASCL1, NeuroD1 and POU2F3 was performed and evaluated using H‐scores, with subtype assigned based on the positive marker (H‐score threshold 〉 10) with the highest H‐score. The 179 samples (75, lung; 51, lymph nodes; 53, non‐nodal metastases) from 84 patients (74 with two, 10 with more than two samples) included 98 (54.7%) ASCL1‐dominant, 47 (26.3%) NeuroD1‐dominant, 15 (8.4%) POU2F3‐dominant, 17 (9.5%) triple‐negative and two (1.1%) ASCL1/NeuroD1 co‐dominant samples. NeuroD1‐dominant subtype was enriched in non‐lung locations. Subtype concordance from pairwise comparison was 71.4% overall and 89.7% after accounting for ASCL1/NeuroD1‐dual expressors and technical factors including 〈 500 cells/slide, H‐score thresholds and sample decalcification. No significant difference in subtype concordance was noted with a longer time lapse or with extrathoracic versus intrathoracic samples in this cohort. Conclusions After accounting for technical factors, transcription factor‐based subtyping was discordant among multiple SCLC samples in ~10% of patients, regardless of sample locations and time lapse. Our findings highlighted the spatiotemporal heterogeneity of SCLC in clinical samples and potential challenges, including technical and biological factors, that might limit concordance in SCLC transcription factor‐based subtyping.
    Type of Medium: Online Resource
    ISSN: 0309-0167 , 1365-2559
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2006447-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: The Lancet Oncology, Elsevier BV, Vol. 23, No. 2 ( 2022-02), p. e62-e74
    Type of Medium: Online Resource
    ISSN: 1470-2045
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 2049730-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: American Journal of Respiratory and Critical Care Medicine, American Thoracic Society, Vol. 206, No. 7 ( 2022-10-01), p. 857-873
    Type of Medium: Online Resource
    ISSN: 1073-449X , 1535-4970
    RVK:
    Language: English
    Publisher: American Thoracic Society
    Publication Date: 2022
    detail.hit.zdb_id: 1468352-0
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 13_Supplement ( 2021-07-01), p. 94-94
    Abstract: A molecular classification of pancreatic ductal adenocarcinoma (PDAC) that informs clinical management remains elusive. Previously identified bulk expression subtypes in the untreated setting were influenced by contaminating stroma whereas single cell RNA-seq (scRNA-seq) of fresh tumors under-represented key cell types. Two consensus subtypes have arisen from these prior efforts: (1) classical-like, and (2) basal-like. Basal-like tumors were associated with worse survival in the metastatic setting but attempts to refine this binary classification have failed to further stratify patient survival. Here, we developed a robust single-nucleus RNA-seq (snRNA-seq) technique for banked frozen PDAC specimens and studied a cohort of untreated resected primary tumors (n ~ 20). Gene expression programs learned across malignant cell and cancer-associated fibroblast (CAF) profiles uncovered a clinically-relevant molecular taxonomy with improved prognostic stratification compared to prior classifications. Digital spatial profiling revealed an association between malignant cells expressing basal-like programs and greater immune infiltration with relatively fewer macrophages, whereas those exhibiting classical-like programs were linked to inflammatory CAFs and macrophage-predominant microniches. Recent clinical trials have supported the increasing adoption of neoadjuvant therapy to aggressively address the risk of micro-metastatic spread and to circumvent concerns of treatment tolerance in the postoperative setting. There is an urgent need to understand how preoperative treatment impacts residual tumor cells and their interactions with other cell types in the tumor microenvironment to identify additional therapeutic vulnerabilities that can be exploited. Towards this end, we performed snRNA-seq on an unmatched cohort of neoadjuvant-treated resected primary tumors (n ~ 25) with most cases involving FOLFIRINOX chemotherapy followed by chemoradiation. Remarkably, the quality of single-nucleus mRNA profiles was comparable between heavily pre-treated and untreated specimens. We identified differentially expressed genes between treated and untreated samples to infer cell-type specific reprogramming in the residual tumor. This analysis revealed that in the neoadjuvant treatment context, there was lower expression of classical-like phenotypes in malignant cells in favor of basal-like phenotypes associated with TNF-NFkB and interferon signaling as well as the presence of novel acinar and neuroendocrine classical-like states. Our refined molecular taxonomy and spatial resolution may help advance precision oncology in PDAC through informative stratification in clinical trials and insights into compartment-specific therapies. Citation Format: William L. Hwang, Karthik A. Jagadeesh, Jimmy A. Guo, Hannah I. Hoffman, Payman Yadollahpour, Jason Reeves, Eugene Drokhlyansky, Nicholas Van Wittenberghe, Samouil Farhi, Denis Schapiro, George Eng, Jason M. Schenkel, William A. Freed-Pastor, Orr Ashenberg, Clifton Rodrigues, Domenic Abbondanza, Toni Delorey, Devan Phillips, Jorge Roldan, Debora Ciprani, Marina Kern, Jaimie L. Barth, Daniel R. Zollinger, Kit Fuhrman, Robin Fropf, Joseph Beechem, Colin Weekes, Cristina R. Ferrone, Jennifer Y. Wo, Theodore S. Hong, Orit Rozenblatt-Rosen, Andrew J. Aguirre, Mari Mino-Kenudson, Carlos Fernandez-del- Castillo, Andrew S. Liss, David T. Ting, Tyler Jacks, Aviv Regev. Multi-compartment reprogramming and spatially-resolved interactions in frozen pancreatic cancer with and without neoadjuvant chemotherapy and radiotherapy at single-cell resolution [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 94.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. SY12-04-SY12-04
    Abstract: Pancreatic ductal adenocarcinoma (PDAC) is projected to be the second leading cause of cancer mortality in the United States by 2030. Given that resistance to cytotoxic therapy is pervasive, there is a critical need to elucidate salient gene expression programs and spatial relationships among malignant and stromal cells in the tumor microenvironment (TME), particularly in residual disease. We developed and applied a single-nucleus RNA-seq (snRNA-seq) technique to 43 banked frozen primary PDAC specimens that either received neoadjuvant therapy (n=25) or were treatment-naïve (n=18). We discovered expression programs across malignant cell and fibroblast profiles that formed the basis for a refined molecular taxonomy, including a novel neural-like progenitor (NRP) malignant program enriched with neoadjuvant treatment in tumors and organoids, and associated with the worst prognosis in bulk profiles from independent cohorts. To elucidate how neoadjuvant treatment and cancer cell- and fibroblast-intrinsic programs modulate the composition of multicellular neighborhoods, we performed spatial profiling with the GeoMx[1] platform (NanoString) on 21 formalin-fixed paraffin-embedded sections using the human whole transcriptome atlas (WTA). Each tumor showed intra-tumoral heterogeneity in tissue architecture and regions of interest (ROIs) with diverse patterns of neoplastic cells, cancer-associated fibroblasts (CAFs), and immune cells were selected for profiling. We deconvolved the WTA data with our snRNA-seq cell type signatures and mapped expression programs onto the tumor architecture to reveal three distinct multicellular neighborhoods, which we annotated as classical, squamoid-basaloid, and treatment-enriched. The observed enrichment in post-treatment residual disease of multiple spatially-defined receptor-ligand interactions and a neighborhood featuring the NRP program, neurotropic CAF program, and CD8+ T cells may open new therapeutic opportunities. Next, we mapped malignant/CAF programs and immune cell subsets at single-cell spatial resolution by performing spatial molecular imaging (SMI[2]; NanoString CosMx) using a panel of 960 RNA targets on a subset of seven tumors (2 untreated, 5 treated) and captured over 200,000 cells with an average of more than 450 transcripts detected per cell. Correlating ROIs from whole-transcriptome DSP to matched fields of view in kiloplex SMI enabled further dissection of PDAC architecture and treatment-associated remodeling of cell type distributions and receptor-ligand interactions. Ongoing functional studies have begun to elucidate the key regulatory elements underlying the distinct treatment-associated NRP malignant program and its interactions with the TME. Overall, the complementary combination of snRNA-seq, whole-transcriptome DSP, and kiloplex SMI provides a high-resolution molecular framework that can be harnessed to augment precision oncology efforts in pancreatic cancer. [1] GeoMx DSP is for Research Use Only and not for use in diagnostic procedures. [2] CosMx SMI is for Research Use Only and not for use in diagnostic procedures. Citation Format: William L. Hwang, Karthik A. Jagadeesh, Jimmy A. Guo, Hannah I. Hoffman, Carina Shiau, Jennifer Su, Payman Yadollahpour, Jason W. Reeves, Youngmi Kim, Sean Kim, Mark Gregory, Prajan Divakar, Eric Miller, Michael Rhodes, Sarah Warren, Erroll Rueckert, Kit Fuhrman, Daniel R. Zollinger, Robin Fropf, Joseph M. Beechem, Arnav Mehta, Toni Delorey, Cristin McCabe, Jaimie L. Barth, Piotr Zelga, Cristina R. Ferrone, Motaz Qadan, Keith D. Lillemoe, Rakesh K. Jain, Jennifer Y. Wo, Theodore S. Hong, Ramnik Xavier, Orit Rozenblatt-Rosen, Andrew J. Aguirre, Carlos Fernandez-Del Castillo, Andrew S. Liss, Mari Mino-Kenudson, David T. Ting, Tyler Jacks, Aviv Regev. Multicellular spatial community featuring a novel neuronal-like malignant phenotype is enriched in pancreatic cancer after neoadjuvant chemotherapy and radiotherapy [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr SY12-04.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages