Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Wiley ; 2022
    In:  Quarterly Journal of the Royal Meteorological Society Vol. 148, No. 746 ( 2022-07), p. 2132-2146
    In: Quarterly Journal of the Royal Meteorological Society, Wiley, Vol. 148, No. 746 ( 2022-07), p. 2132-2146
    Abstract: To study the combined impact of soil moisture and microphysical perturbations on convective clouds and precipitation over Central Europe, an ensemble of five dozen real‐world weather prediction forecasts was conducted with the COnsortium for Small‐scale MOdeling (COSMO) model at convection‐permitting resolution for a case with weak large‐scale forcing (6 June 2016). We find a large sensitivity of precipitation, ranging from +10% to 23% in 12‐hr precipitation totals. While the homogeneous soil‐moisture bias of 25% primarily controls the timing of convection initiation and the amount of surface rainfall, the number of cloud condensation nuclei and width of the cloud droplet size distribution mainly control the number, size, and lifetime of convective clouds. In moisture‐limited conditions, mainly positive couplings are acting. Drier soils, cleaner air, and a broader cloud droplet size distribution result in less rainfall. Wetter soils and more polluted conditions lead to fewer, but larger, cloud clusters. Since microphysical process rates depend systematically on the sign of the perturbations, but rainfall does not, there are compensating effects at work that buffer microphysical perturbations directly and impact the cloud condensate amount and the rainfall at the ground.
    Type of Medium: Online Resource
    ISSN: 0035-9009 , 1477-870X
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 3142-2
    detail.hit.zdb_id: 2089168-4
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Quarterly Journal of the Royal Meteorological Society, Wiley, Vol. 137, No. S1 ( 2011-01), p. 118-136
    Abstract: The present study investigates the initiation of precipitating deep convection in an ensemble of convection‐resolving mesoscale models. Results of eight different model runs from five non‐hydrostatic models are compared for a case of the Convective and Orographically‐induced Precipitation Study (COPS). An isolated convective cell initiated east of the Black Forest crest in southwest Germany, although convective available potential energy was only moderate and convective inhibition was high. Measurements revealed that, due to the absence of synoptic forcing, convection was initiated by local processes related to the orography. In particular, the lifting by low‐level convergence in the planetary boundary layer is assumed to be the dominant process on that day. The models used different configurations as well as different initial and boundary conditions. By comparing the different model performance with each other and with measurements, the processes which need to be well represented to initiate convection at the right place and time are discussed. Besides an accurate specification of the thermodynamic and kinematic fields, the results highlight the role of boundary‐layer convergence features for quantitative precipitation forecasts in mountainous terrain. Copyright © 2011 Royal Meteorological Society
    Type of Medium: Online Resource
    ISSN: 0035-9009 , 1477-870X
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2011
    detail.hit.zdb_id: 3142-2
    detail.hit.zdb_id: 2089168-4
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Quarterly Journal of the Royal Meteorological Society, Wiley, Vol. 143, No. 702 ( 2017-01), p. 69-100
    Abstract: Large‐eddy simulations (LES) with the new ICOsahedral Non‐hydrostatic atmosphere model (ICON) covering Germany are evaluated for four days in spring 2013 using observational data from various sources. Reference simulations with the established Consortium for Small‐scale Modelling (COSMO) numerical weather prediction model and further standard LES codes are performed and used as a reference. This comprehensive evaluation approach covers multiple parameters and scales, focusing on boundary‐layer variables, clouds and precipitation. The evaluation points to the need to work on parametrizations influencing the surface energy balance, and possibly on ice cloud microphysics. The central purpose for the development and application of ICON in the LES configuration is the use of simulation results to improve the understanding of moist processes, as well as their parametrization in climate models. The evaluation thus aims at building confidence in the model's ability to simulate small‐ to mesoscale variability in turbulence, clouds and precipitation. The results are encouraging: the high‐resolution model matches the observed variability much better at small‐ to mesoscales than the coarser resolved reference model. In its highest grid resolution, the simulated turbulence profiles are realistic and column water vapour matches the observed temporal variability at short time‐scales. Despite being somewhat too large and too frequent, small cumulus clouds are well represented in comparison with satellite data, as is the shape of the cloud size spectrum. Variability of cloud water matches the satellite observations much better in ICON than in the reference model. In this sense, it is concluded that the model is fit for the purpose of using its output for parametrization development, despite the potential to improve further some important aspects of processes that are also parametrized in the high‐resolution model.
    Type of Medium: Online Resource
    ISSN: 0035-9009 , 1477-870X
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 3142-2
    detail.hit.zdb_id: 2089168-4
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    In: Quarterly Journal of the Royal Meteorological Society, Wiley, Vol. 145, No. 724 ( 2019-10), p. 3102-3115
    Abstract: The relative contributions of soil moisture heterogeneities, a stochastic boundary‐layer perturbation scheme and varied aerosol concentrations representing microphysical uncertainties on the diurnal cycle of convective precipitation and its spatial variability are examined conditional on the prevailing weather regime. To achieve this, separate perturbed‐parameter ensemble simulations are performed with the Consortium for Small‐scale Modeling (COSMO) model at convection‐permitting horizontal grid spacing for 10 days during a high‐impact weather episode in 2016 in Central Europe. We consider hourly precipitation amounts and their spatial distribution, focus on ensemble mean and spread aggregated over strong and weak forcing conditions, and employ spatial evaluation techniques. The convective adjustment time‐scale diagnostic is used to distinguish the different precipitation regimes. While the total amount of daily precipitation is hardly changed by the different perturbation approaches (less than 5 % ), the spatial variability of precipitation exhibits clear differences. Soil moisture heterogeneity primarily introduces variability during convection initiation causing a steeper increase in normalized rainfall spread prior to the onset of afternoon precipitation. The stochastic boundary‐layer perturbations lead to the largest spatial variability impacting precipitation from initial time onwards with an amplitude comparable to the operational ensemble spread. Similarly, perturbed aerosol concentrations impact spatial precipitation variability from the model start onwards, but to a smaller degree. Soil moisture heterogeneity shows the strongest weather regime dependence, with the greatest impact on convection during weak synoptic forcing. All types of perturbation increase dispersion of precipitation while maintaining the domain‐averaged precipitation rates.
    Type of Medium: Online Resource
    ISSN: 0035-9009 , 1477-870X
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 3142-2
    detail.hit.zdb_id: 2089168-4
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Schweizerbart ; 2011
    In:  Meteorologische Zeitschrift Vol. 20, No. 2 ( 2011-04-01), p. 185-197
    In: Meteorologische Zeitschrift, Schweizerbart, Vol. 20, No. 2 ( 2011-04-01), p. 185-197
    Type of Medium: Online Resource
    ISSN: 0941-2948
    Uniform Title: Soil moisture impacts on convective indices and precipitation over complex terrain
    RVK:
    Language: English , English
    Publisher: Schweizerbart
    Publication Date: 2011
    detail.hit.zdb_id: 511391-X
    detail.hit.zdb_id: 2045168-4
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Copernicus GmbH ; 2022
    In:  Weather and Climate Dynamics Vol. 3, No. 4 ( 2022-11-07), p. 1273-1289
    In: Weather and Climate Dynamics, Copernicus GmbH, Vol. 3, No. 4 ( 2022-11-07), p. 1273-1289
    Abstract: Abstract. The relative impact of individual and combined uncertainties of cloud condensation nuclei (CCN) concentration and the shape parameter of the cloud droplet size distribution (CDSD) in the presence of initial and boundary condition uncertainty (IBC) on convection forecasts is quantified using the convection-permitting model ICON-D2 (ICOsahedral Non-hydrostatic). We performed 180-member ensemble simulations for five real case studies representing different synoptic forcing situations over Germany and inspected the precipitation variability on different spatial and temporal scales. During weak synoptic control, the relative impact of combined microphysical uncertainty on daily area-averaged precipitation accounts for about one-third of the variability caused by operational IBC uncertainty. The effect of combined microphysical perturbations exceeds the impact of individual CCN or CDSD perturbations and is twice as large during weak control. The combination of IBC and microphysical uncertainty affects the extremes of daily spatially averaged rainfall of individual members by extending the tails of the forecast distribution by 5 % in weakly forced conditions. The responses are relatively insensitive in strong forcing situations. Visual inspection and objective analysis of the spatial variability in hourly rainfall rates reveal that IBC and microphysical uncertainties alter the spatial variability in precipitation forecasts differently. Microphysical perturbations slightly shift convective cells but affect precipitation intensities, while IBC perturbations scramble the location of convection during weak control. Cloud and rainwater contents are more sensitive to microphysical uncertainty than precipitation and less dependent on synoptic control.
    Type of Medium: Online Resource
    ISSN: 2698-4016
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2982467-9
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Copernicus GmbH ; 2022
    In:  Atmospheric Chemistry and Physics Vol. 22, No. 3 ( 2022-02-16), p. 2153-2172
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 22, No. 3 ( 2022-02-16), p. 2153-2172
    Abstract: Abstract. The predictability of deep moist convection is subject to large uncertainties resulting from inaccurate initial and boundary data, the incomplete description of physical processes, or microphysical uncertainties. In this study, we investigate the response of convective clouds and precipitation over central Europe to varying cloud condensation nuclei (CCN) concentrations and different shape parameters of the cloud droplet size distribution (CDSD), both of which are not well constrained by observations. We systematically evaluate the relative impact of these uncertainties in realistic convection-resolving simulations for multiple cases with different synoptic controls using the new icosahedral non-hydrostatic ICON model. The results show a large systematic increase in total cloud water content with increasing CCN concentrations and narrower CDSDs, together with a reduction in the total rain water content. This is related to a suppressed warm-rain formation due to a less efficient collision–coalescence process. It is shown that the evaporation at lower levels is responsible for diminishing these impacts on surface precipitation, which lies between +13 % and −16 % compared to a reference run with continental aerosol assumption. In general, the precipitation response was larger for weakly forced cases. We also find that the overall timing of convection is not sensitive to the microphysical uncertainties applied, indicating that different rain intensities are responsible for changing precipitation totals at the ground. Furthermore, weaker rain intensities in the developing phase of convective clouds can allow for a higher convective instability at later times, which can lead to a turning point with larger rain intensities later on. The existence of such a turning point and its location in time can have a major impact on precipitation totals. In general, we find that an increase in the shape parameter can produce almost as large a variation in precipitation as a CCN increase from maritime to polluted conditions. The narrowing of the CDSD not only decreases the absolute values of autoconversion and accretion but also decreases the relative role of the warm-rain formation in general, independent of the prevailing weather regime. We further find that increasing CCN concentrations reduce the effective radius of cloud droplets in a stronger manner than larger shape parameters. The cloud optical depth, however, reveals a similarly large increase with larger shape parameters when changing the aerosol load from maritime to polluted. By the frequency of updrafts as a function of height, we show a negative aerosol effect on updraft strength, leading to an enervation of deep convection. These findings demonstrate that both the CCN assumptions and the CDSD shape parameter are important for quantitative precipitation forecasting and should be carefully chosen if double-moment schemes are used for modeling aerosol–cloud interactions.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Wiley ; 2011
    In:  Quarterly Journal of the Royal Meteorological Society Vol. 137, No. S1 ( 2011-01), p. 42-56
    In: Quarterly Journal of the Royal Meteorological Society, Wiley, Vol. 137, No. S1 ( 2011-01), p. 42-56
    Abstract: Soil moisture monitoring data from the Convective and Orographically‐induced Precipitation Study (COPS) 2007 are combined with operational and high‐resolution simulations with the weather forecast system GME/COSMO‐DE to analyse the discrepancies between observed and modelled soil moisture fields and their potential impacts on convective precipitation forecasts. We use data from the newly installed soil moisture monitoring network comprising 47 stations with soil moisture sensors installed at three different depths within the COPS area in southwest Germany. The obtained soil moisture fields are compared to their related representation within the global model GME interpolated with high‐resolution soil and surface data to a 2.8 km resolution yielding soil moisture values on the same grid as the high‐resolution model COSMO‐DE. Systematic differences between modelled and measured soil moisture values are found and used to determine the potential impact of large soil moisture biases for the modelling of convective processes. This is achieved by conducting sensitivity tests using COSMO‐DE, in which the initialisation fields of soil moisture are varied. Results show a general mean bias towards too dry soil conditions, both in GME during the whole COPS period, as well as in the high‐resolution modelling of specific COPS IOPs with COSMO‐DE. The influence of this bias on simulated precipitation is significant and non‐trivial and depends on the specifics of the analysed case study. The results presented in this study demonstrate that soil moisture has a considerable impact on convection‐related parameters over complex and heterogeneous terrain, but that no simple relationship regarding the sign of the soil moisture–precipitation feedback could be identified due to a complex interplay between various factors that favour or inhibit convection initiation. Copyright © 2011 Royal Meteorological Society
    Type of Medium: Online Resource
    ISSN: 0035-9009 , 1477-870X
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2011
    detail.hit.zdb_id: 3142-2
    detail.hit.zdb_id: 2089168-4
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Copernicus GmbH ; 2022
    In:  Atmospheric Chemistry and Physics Vol. 22, No. 16 ( 2022-08-26), p. 10841-10860
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 22, No. 16 ( 2022-08-26), p. 10841-10860
    Abstract: Abstract. To reduce the underdispersion of precipitation in convective-scale ensemble prediction systems, we investigate the relevance of microphysical and land-surface uncertainties for convective-scale predictability. We use three different initial soil moisture fields and study the response of convective precipitation to varying cloud condensation nuclei (CCN) concentrations and different shape parameters of the cloud droplet size distribution (CDSD) by applying a novel combined-perturbation strategy. Using the new ICOsahedral Non-hydrostatic (ICON) model, we construct a 60-member ensemble for cases with summertime convection under weak and strong synoptic-scale forcing over central Europe. We find a systematic positive soil moisture–precipitation feedback for all cases, regardless of the type of synoptic forcing, and a stronger response of precipitation to different CCN concentrations and shape parameters for weak forcing than for strong forcing. While the days with weak forcing show a systematic decrease in precipitation with increasing aerosol loading, days with strong forcing also show nonsystematic responses for some values of the shape parameters. The large magnitudes of precipitation deviations compared to a reference simulation ranging between −23 % and +18 % demonstrate that the uncertainties investigated here and, in particular, their collective effect are highly relevant for quantitative precipitation forecasting of summertime convection in central Europe. A rainwater budget analysis is used to identify the dominating source and sink terms and their response to the uncertainties applied in this study. Results also show a dominating cold-rain process for all cases and a strong but mostly nonsystematic impact on the release of latent heat, which is considered to be the prime mechanism for the upscale growth of small errors affecting the predictability of convective systems. The combined ensemble spread when accounting for all three uncertainties lies in the same range as the ones from an operational convective-scale ensemble prediction system with 20 members determined in previous studies. This indicates that the combination of different perturbations used in our study may be suitable for ensemble forecasting and that this method should be evaluated against other sources of uncertainty.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    In: Quarterly Journal of the Royal Meteorological Society, Wiley, Vol. 137, No. S1 ( 2011-01), p. 3-30
    Abstract: Within the framework of the international field campaign COPS (Convective and Orographically‐induced Precipitation Study), a large suite of state‐of‐the‐art meteorological instrumentation was operated, partially combined for the first time. This includes networks of in situ and remote‐sensing systems such as the Global Positioning System as well as a synergy of multi‐wavelength passive and active remote‐sensing instruments such as advanced radar and lidar systems. The COPS field phase was performed from 01 June to 31 August 2007 in a low‐mountain area in southwestern Germany/eastern France covering the Vosges mountains, the Rhine valley and the Black Forest mountains. The collected data set covers the entire evolution of convective precipitation events in complex terrain from their initiation, to their development and mature phase until their decay. Eighteen Intensive Observation Periods with 37 operation days and eight additional Special Observation Periods were performed, providing a comprehensive data set covering different forcing conditions. In this article, an overview of the COPS scientific strategy, the field phase, and its first accomplishments is given. Highlights of the campaign are illustrated with several measurement examples. It is demonstrated that COPS research provides new insight into key processes leading to convection initiation and to the modification of precipitation by orography, in the improvement of quantitative precipitation forecasting by the assimilation of new observations, and in the performance of ensembles of convection‐permitting models in complex terrain. Copyright © 2010 Royal Meteorological Society
    Type of Medium: Online Resource
    ISSN: 0035-9009 , 1477-870X
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2011
    detail.hit.zdb_id: 3142-2
    detail.hit.zdb_id: 2089168-4
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages