Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 11, No. 6 ( 2018-06-27), p. 3737-3757
    Abstract: Abstract. We describe the nitrogen oxide instrument designed for the autonomous operation on board passenger aircraft in the framework of the European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System). We demonstrate the performance of the instrument using data from two deployment periods aboard an A340-300 aircraft of Deutsche Lufthansa. The well-established chemiluminescence detection method is used to measure nitrogen monoxide (NO) and nitrogen oxides (NOx). NOx is measured using a photolytic converter, and nitrogen dioxide (NO2) is determined from the difference between NOx and NO. This technique allows measuring at high time resolution (4 s) and high precision in the low ppt range (NO: 2σ = 24 pptv; NOx: 2σ = 35 pptv) over different ambient temperature and ambient pressure altitude ranges (from surface pressure down to 190 hPa). The IAGOS NOx instrument is characterized for (1) calibration stability and total uncertainty, (2) humidity and chemical interferences (e.g., ozone; nitrous acid, HONO; peroxyacetyl nitrate, PAN) and (3) inter-instrumental precision. We demonstrate that the IAGOS NOx instrument is a robust, fully automated, and long-term stable instrument suitable for unattended operation on airborne platforms, which provides useful measurements for future air quality studies and emission estimates.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2505596-3
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 20, No. 13 ( 2020-07-14), p. 8157-8179
    Abstract: Abstract. The vertical distribution and seasonal variation of water vapour volume mixing ratio (H2O VMR), of relative humidity with respect to ice (RHice) and particularly of regions with ice-supersaturated air masses (ISSRs) in the extratropical upper troposphere and lowermost stratosphere are investigated at northern mid-latitudes over the eastern North American, North Atlantic and European regions for the period 1995 to 2010. Observation data originate from regular and continuous long-term measurements on board instrumented passenger aircraft in the framework of the European research programme MOZAIC (1994–2010), which continues as the European research infrastructure IAGOS (from 2011). Data used in our study result from collocated observations of O3 VMR, RHice and temperature, as well as H2O VMR deduced from RHice and temperature data. The in situ observations of H2O VMR and RHice with a vertical resolution of 30 hPa (〈 750 m at the extratropical tropopause level) and a horizontal resolution of 1 km resolve detailed features of the distribution of water vapour and ice-supersaturated air relative to the thermal tropopause, including their seasonal and regional variability and chemical signatures at various distances from the tropopause layer. Annual cycles of the investigated properties document the highest H2O VMR and temperatures above the thermal tropopause in the summer months, whereas RHice above the thermal tropopause remains almost constant in the course of the year. Over all investigated regions, upper tropospheric air masses close to the tropopause level are nearly saturated with respect to ice and contain a significant fraction of ISSRs with a distinct seasonal cycle of minimum values in summer (30 % over the ocean, 20 %–25 % over land) and maximum values in late winter (35 %–40 % over both land and ocean). Above the thermal tropopause, ISSRs are occasionally observed with an occurrence probability of 1.5 ± 1.1 %, whereas above the dynamical tropopause at 2 PVU (PVU: potential vorticity unit), the occurrence probability increases 4-fold to 8.4 ± 4.4 %. In both coordinate systems related to tropopause height (TPH), the ISSR occurrence probabilities drop to values below 1 % for the next higher air mass layer with pressure levels p 〈 pTPH−15 hPa. For both tropopause definitions, the tropospheric nature or fingerprint, based on O3 VMR, indicates the continuing tropospheric influence on ISSRs inside and above the respective tropopause layer. For the non-ISSRs, however, the stratospheric nature is clearly visible above the thermal tropopause, whereas above the dynamical tropopause the air masses show a still substantial tropospheric influence. For all three regions, seasonal deviations from the long-term annual cycle of ISSR occurrence show no significant trends over the observation period of 15 years, whereas a statistically significant correlation between the North Atlantic Oscillation (NAO) index and the deviation of ISSR occurrence from the long-term average is observed for the North Atlantic region but not for the eastern North American and European regions.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 17, No. 20 ( 2017-10-23), p. 12495-12508
    Abstract: Abstract. Despite several studies on temperature trends in the tropopause region, a comprehensive understanding of the evolution of temperatures in this climate-sensitive region of the atmosphere remains elusive. Here we present a unique global-scale, long-term data set of high-resolution in situ temperature data measured aboard passenger aircraft within the European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; http://www.iagos.org). This data set is used to investigate temperature trends within the global upper troposphere and lowermost stratosphere (UTLS,  〈  13 km) for the period of 1995–2012 in different geographical regions and vertical layers of the UTLS. The largest number of observations is available over the North Atlantic. Here, a neutral temperature trend is found within the lowermost stratosphere. This contradicts the temperature trend in the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis, in which a significant (95 % confidence) temperature increase of +0.56 K decade−1 is found. Differences between trends derived from observations and reanalysis data can be traced back to changes in the temperature difference between observation and model data over the period studied. This study underpins the value of the IAGOS temperature observations as an anchor point for the evaluation of reanalyses and its suitability for independent trend analyses.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Copernicus GmbH ; 2016
    In:  Atmospheric Chemistry and Physics Vol. 16, No. 10 ( 2016-05-18), p. 6011-6025
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 16, No. 10 ( 2016-05-18), p. 6011-6025
    Abstract: Abstract. This study presents the analysis of the structure and air mass characteristics of the lower atmosphere during the field campaign PARADE (PArticles and RAdicals: Diel observations of the impact of urban and biogenic Emissions) on Mount Kleiner Feldberg in southwestern Germany during late summer 2011. We analysed measurements of meteorological variables (temperature, moisture, pressure, wind speed and direction) from radio soundings and of chemical tracers (carbon dioxide, ozone) from aircraft measurements. We focus on the thermodynamic and dynamic properties that control the chemical distribution of atmospheric constituents in the boundary layer. We show that the evolution of tracer profiles of CO2 and O3 indicate mixing across the inversion layer (or entrainment zone). This finding is supported by the analysis of tracer–tracer correlations which are indicative for mixing and the relation of tracer profiles in relation to the evolution of the boundary layer height deduced from radio soundings. The study shows the relevance of entrainment processes for the lower troposphere in general and specifically that the tracer–tracer correlation method can be used to identify mixing and irreversible exchange processes across the inversion layer.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    In: Faraday Discussions, Royal Society of Chemistry (RSC), Vol. 200 ( 2017), p. 229-249
    Type of Medium: Online Resource
    ISSN: 1359-6640 , 1364-5498
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2017
    detail.hit.zdb_id: 1472891-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Meteorological Society ; 2012
    In:  Weather and Forecasting Vol. 27, No. 3 ( 2012-06-01), p. 770-783
    In: Weather and Forecasting, American Meteorological Society, Vol. 27, No. 3 ( 2012-06-01), p. 770-783
    Abstract: The Congo Basin and the adjacent equatorial eastern Atlantic are among the most active regions of the world in terms of intense deep moist convection, leading to frequent lightning and severe squalls. Studying the dynamics and climatology of this convection is difficult due to a very sparse operational network of ground-based observations. Here, a detailed analysis of recently available high temporal resolution meteorological observations from three oil platforms off the coast of Angola spanning the three wet seasons from 2006/07 to 2008/09 is presented. The annual cycle of squall days as identified from wind data closely follows that of convective available potential energy (CAPE) and therefore mirrors the cycle of wet and dry seasons. The diurnal cycle of squall occurrence varies from station to station, most likely related to local features such as coastlines and orography, which control the initiation of storms. An attempt to classify squalls based on the time evolution of the station meteorology and satellite imagery suggests that microbursts account for at least one-third of the strong gusts, while mesoscale squall lines appear to be quite rare. On a daily basis the probability of squall occurrence increases with increasing values of CAPE, downdraft CAPE, and 925–700-hPa wind shear, and decreases for high convective inhibition, all calculated from vertical profiles of temperature and humidity at the nearest grid point in the NCEP–NCAR and ECMWF reanalysis datasets. Both the climatological results and the stability indices can be used for local forecasting to avoid squalls impacting on operations on the offshore platforms.
    Type of Medium: Online Resource
    ISSN: 0882-8156 , 1520-0434
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2012
    detail.hit.zdb_id: 2025194-4
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages