Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 18, No. 23 ( 2018-12-11), p. 17545-17572
    Abstract: Abstract. A regional modeling study on the impact of desert dust on cloud formation is presented for a major Saharan dust outbreak over Europe from 2 to 5 April 2014. The dust event coincided with an extensive and dense cirrus cloud layer, suggesting an influence of dust on atmospheric ice nucleation. Using interactive simulation with the regional dust model COSMO-MUSCAT, we investigate cloud and precipitation representation in the model and test the sensitivity of cloud parameters to dust–cloud and dust–radiation interactions of the simulated dust plume. We evaluate model results with ground-based and spaceborne remote sensing measurements of aerosol and cloud properties, as well as the in situ measurements obtained during the ML-CIRRUS aircraft campaign. A run of the model with single-moment bulk microphysics without online dust feedback considerably underestimated cirrus cloud cover over Germany in the comparison with infrared satellite imagery. This was also reflected in simulated upper-tropospheric ice water content (IWC), which accounted for only 20 % of the observed values. The interactive dust simulation with COSMO-MUSCAT, including a two-moment bulk microphysics scheme and dust–cloud as well as dust–radiation feedback, in contrast, led to significant improvements. The modeled cirrus cloud cover and IWC were by at least a factor of 2 higher in the relevant altitudes compared to the noninteractive model run. We attributed these improvements mainly to enhanced deposition freezing in response to the high mineral dust concentrations. This was corroborated further in a significant decrease in ice particle radii towards more realistic values, compared to in situ measurements from the ML-CIRRUS aircraft campaign. By testing different empirical ice nucleation parameterizations, we further demonstrate that remaining uncertainties in the ice-nucleating properties of mineral dust affect the model performance at least as significantly as including the online representation of the mineral dust distribution. Dust–radiation interactions played a secondary role for cirrus cloud formation, but contributed to a more realistic representation of precipitation by suppressing moist convection in southern Germany. In addition, a too-low specific humidity in the 7 to 10 km altitude range in the boundary conditions was identified as one of the main reasons for misrepresentation of cirrus clouds in this model study.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    In: Quarterly Journal of the Royal Meteorological Society, Wiley, Vol. 144, No. 710 ( 2018-01), p. 231-250
    Abstract: At the end of July 2013, a series of severe thunderstorms associated with heavy rainfall, severe wind gusts and large hail affected parts of Germany. On 28 July 2013, two supercells formed almost simultaneously in southern Germany, from which only the more southerly cell produced hailstones up to 10 cm in diameter on a hailswath approximately 120 km long and 15–20 km wide. For the insurance industry, this event, with losses of more than EUR 1 billion, was one of the most expensive natural disasters that has ever occurred in Germany. This article investigates the creation, temporal evolution and effects of the most severe supercell that day by considering and merging radar and satellite data, eyewitness reports, insurance loss data and numerical model studies. Observations of hail at ground level fit very well with a cold‐ring‐shaped structure in the cloud‐top brightness temperature observed by a geostationary satellite imager. Various simulations conducted with the convection‐permitting COnsortium for Small‐scale MOdeling (COSMO) revealed that the track of the hailstorm could be reproduced only when convection was triggered artificially by two warm bubbles that produced single cells that were precursors of the supercell. The model results suggested that the supercell developed near a pre‐existing single cell through low‐level flow convergence in an environment with moderate CAPE but substantial wind shear and storm‐relative helicity, both of which persisted for several hours in the area in which the supercell moved.
    Type of Medium: Online Resource
    ISSN: 0035-9009 , 1477-870X
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 3142-2
    detail.hit.zdb_id: 2089168-4
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2008
    In:  Journal of Atmospheric and Oceanic Technology Vol. 25, No. 7 ( 2008-07-01), p. 1182-1196
    In: Journal of Atmospheric and Oceanic Technology, American Meteorological Society, Vol. 25, No. 7 ( 2008-07-01), p. 1182-1196
    Abstract: To obtain statistically stable reflectivity measurements by meteorological radars, it is common practice to average over several consecutive pulses during which the antenna rotates at a certain angular velocity. Taking into account the antenna’s continuous motion, the measured reflectivity is determined by an effective beam weighting function, which is different from a single-pulse weighting function—a fact that is widely ignored in applications involving beam weighting. In this paper, the effective beam weighting function is investigated in detail. The theoretical derivation shows that the effective weighting function is essentially a simple moving sum of single-beam weighting functions. Assuming a Gaussian shape of a single pulse, a simple and easy-to-use parameterization of the effective beam weighting function is arrived at, which depends only on the single beamwidth and the ratio of the single beamwidth to the rotational angular averaging interval. The derived relation is formulated in the “radar system” (i.e., the spherical coordinate system consisting of azimuth and elevation angles) that is often applied in practice. Formulas for the “beam system” (two orthogonal angles relative to the beam axis) are also presented. The final parameterization should be applicable to almost all meteorological radars and might be used (i) in specialized radar data analyses (with ground-based or satellite radars) and (ii) for radar forward operators to calculate simulated radar parameters from the results of NWP models.
    Type of Medium: Online Resource
    ISSN: 1520-0426 , 0739-0572
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2008
    detail.hit.zdb_id: 2021720-1
    detail.hit.zdb_id: 48441-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2014
    In:  Journal of Atmospheric and Oceanic Technology Vol. 31, No. 12 ( 2014-12), p. 2650-2670
    In: Journal of Atmospheric and Oceanic Technology, American Meteorological Society, Vol. 31, No. 12 ( 2014-12), p. 2650-2670
    Abstract: Simulation of radar beam propagation is an important component of numerous radar applications in meteorology, including height assignment, quality control, and especially the so-called radar forward operator. Although beam propagation in the atmosphere depends on the refractive index and its vertical variation, which themselves depend on the actual state of the atmosphere, the most common method is to apply the 4/3 earth radius model, based on climatological standard conditions. Serious deviations from the climatological value can occur under so-called ducting conditions, where radar beams at low elevations can be trapped or propagate in a waveguide-like fashion, such that this model is unsuitable in this case. To account for the actual atmospheric conditions, sophisticated methods have been developed in literature. However, concerning the practical implementation of these methods, it was determined that the description in the literature is not always complete with respect to possible pitfalls for practical implementations. In this paper, a revised version of an existing method (one example for the above-mentioned “pitfall” statement) is introduced that exploits Snell’s law for spherically stratified media. From Snell’s law, the correct sign of the local elevation is a priori ambiguous, and the revised method explicitly applies (i) a total reflection criterion and (ii) another ad hoc criterion to solve the problem. Additionally, a new method, based on an ordinary differential equation with respect to range, is proposed in this paper that has no ambiguity. Sensitivity experiments are conducted to investigate the properties of these three methods. The results show that both the revised and new methods are robust under nonstandard conditions. But considering the need to catch an elevation sign ambiguity in the revised method (which cannot be excluded to fail in rare instances), the new method is regarded as more robust and unproblematic, for example, for applications in radar forward operators.
    Type of Medium: Online Resource
    ISSN: 0739-0572 , 1520-0426
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2014
    detail.hit.zdb_id: 2021720-1
    detail.hit.zdb_id: 48441-6
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2005
    In:  Journal of the Atmospheric Sciences Vol. 62, No. 6 ( 2005-06-01), p. 1917-1931
    In: Journal of the Atmospheric Sciences, American Meteorological Society, Vol. 62, No. 6 ( 2005-06-01), p. 1917-1931
    Abstract: The effects of the collisional breakup of raindrops are investigated using the Hebrew University Cloud Model (HUCM). The parameterizations, which are combined in the new breakup scheme, are those of Low and List, Beard and Ochs, as well as Brown. A sensitivity study reveals strong effects of collisional breakup on the precipitation formation in mixed-phase deep convective clouds for strong as well as for weak precipitation events. Collisional breakup reduces the number of large raindrops, increases the number of small raindrops, and, as a consequence, decreases surface rain rates and considerably reduces the speed of rain formation. In addition, it was found that including breakup can lead to a more intense triggering of secondary convective cells. But a statistical comparison with observed raindrop size distributions shows that the parameterizations might systematically overestimate collisional breakup.
    Type of Medium: Online Resource
    ISSN: 1520-0469 , 0022-4928
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2005
    detail.hit.zdb_id: 218351-1
    detail.hit.zdb_id: 2025890-2
    SSG: 16,13
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Elsevier BV ; 2010
    In:  Atmospheric Research Vol. 96, No. 2-3 ( 2010-5), p. 286-301
    In: Atmospheric Research, Elsevier BV, Vol. 96, No. 2-3 ( 2010-5), p. 286-301
    Type of Medium: Online Resource
    ISSN: 0169-8095
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2010
    detail.hit.zdb_id: 2012396-6
    detail.hit.zdb_id: 233023-4
    SSG: 16,13
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    In: Atmospheric Research, Elsevier BV, Vol. 147-148 ( 2014-10), p. 145-161
    Type of Medium: Online Resource
    ISSN: 0169-8095
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2014
    detail.hit.zdb_id: 2012396-6
    detail.hit.zdb_id: 233023-4
    SSG: 16,13
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    In: Geoscientific Model Development, Copernicus GmbH, Vol. 9, No. 9 ( 2016-09-02), p. 3027-3054
    Abstract: Abstract. This paper presents the Semi-empirical URban canopY parametrization (SURY) v1.0, which bridges the gap between bulk urban land-surface schemes and explicit-canyon schemes. Based on detailed observational studies, modelling experiments and available parameter inventories, it offers a robust translation of urban canopy parameters – containing the three-dimensional information – into bulk parameters. As a result, it brings canopy-dependent urban physics to existing bulk urban land-surface schemes of atmospheric models. At the same time, SURY preserves a low computational cost of bulk schemes for efficient numerical weather prediction and climate modelling at the convection-permitting scales. It offers versatility and consistency for employing both urban canopy parameters from bottom-up inventories and bulk parameters from top-down estimates. SURY is tested for Belgium at 2.8 km resolution with the COSMO-CLM model (v5.0_clm6) that is extended with the bulk urban land-surface scheme TERRA_URB (v2.0). The model reproduces very well the urban heat islands observed from in situ urban-climate observations, satellite imagery and tower observations, which is in contrast to the original COSMO-CLM model without an urban land-surface scheme. As an application of SURY, the sensitivity of atmospheric modelling with the COSMO-CLM model is addressed for the urban canopy parameter ranges from the local climate zones of http://WUDAPT.org. City-scale effects are found in modelling the land-surface temperatures, air temperatures and associated urban heat islands. Recommendations are formulated for more precise urban atmospheric modelling at the convection-permitting scales. It is concluded that urban canopy parametrizations including SURY, combined with the deployment of the WUDAPT urban database platform and advancements in atmospheric modelling systems, are essential.
    Type of Medium: Online Resource
    ISSN: 1991-9603
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 2456725-5
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    In: Atmosphere, MDPI AG, Vol. 12, No. 1 ( 2021-01-08), p. 89-
    Abstract: Parametrization of radiation transfer through clouds is an important factor in the ability of Numerical Weather Prediction models to correctly describe the weather evolution. Here we present a practical parameterization of both liquid droplets and ice optical properties in the longwave and shortwave radiation. An advanced spectral averaging method is used to calculate the extinction coefficient, single scattering albedo, forward scattered fraction and asymmetry factor (βext, ϖ, f, g), taking into account the nonlinear effects of light attenuation in the spectral averaging. An ensemble of particle size distributions was used for the ice optical properties calculations, which enables the effective size range to be extended up to 570 μm and thus be applicable for larger hydrometeor categories such as snow, graupel, and rain. The new parameterization was applied both in the COSMO limited-area model and in ICON global model and was evaluated by using the COSMO model to simulate stratiform ice and water clouds. Numerical weather prediction models usually determine the asymmetry factor as a function of effective size. For the first time in an operational numerical weather prediction (NWP) model, the asymmetry factor is parametrized as a function of aspect ratio. The method is generalized and is available on-line to be readily applied to any optical properties dataset and spectral intervals of a wide range of radiation transfer models and applications.
    Type of Medium: Online Resource
    ISSN: 2073-4433
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2605928-9
    SSG: 23
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Meteorological Society ; 2022
    In:  Monthly Weather Review Vol. 150, No. 5 ( 2022-05), p. 969-980
    In: Monthly Weather Review, American Meteorological Society, Vol. 150, No. 5 ( 2022-05), p. 969-980
    Abstract: We investigate the assimilation of nowcasted information into a classical data assimilation cycle. As a reference setup, we employ the assimilation of standard observations such as direct observations of particular variables into a forecasting system. The pure advective movement extrapolation of observations as a simple nowcasting (NWC) is usually much better for the first minutes to hours, until outperformed by numerical weather prediction (NWP) based on data assimilation. Can nowcasted information be used in the data assimilation cycle? We study both an oscillator model and the Lorenz 63 model with assimilation based on the localized ensemble transform Kalman filter (LETKF). We investigate and provide a mathematical framework for the assimilation of nowcasted information, approximated as a local tendency, into the LETKF in each assimilation step. In particular, we derive and discuss adequate observation error and background uncertainty covariance matrices and interpret the assimilation of nowcasted information as assimilation with an H 1 -type metric in observation space. Further, we show numerical results that prove that nowcasted information in data assimilation has the potential to significantly improve model based forecasting.
    Type of Medium: Online Resource
    ISSN: 0027-0644 , 1520-0493
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 2033056-X
    detail.hit.zdb_id: 202616-8
    SSG: 14
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages